This site is undergoing a full revamp. Layout may be temporarily broken.

Blog

  • Prezentácia na HCI International 2022

    Prezentácia na HCI International 2022

    Teším sa na vystúpenie na konferencii HCI International 2022 v Göteborgu, Švédsko, dnes a na predstavenie môjho nového príspevku Say It Right: Neuronový strojový preklad AI umožňuje novým hovorcom oživiť Lemko počas sekcie S143: Aplikácie umelej a rozšírenej inteligencie v úlohách súvisiacich s jazykovým textom a rečou.

    Príspevok v zborníku konferencie: https://link.springer.com/chapter/10.1007/978-3-031-05643-7_37

    Please cite as:
    Orynycz, P. (2022). Say It Right: Neuronový strojový preklad AI umožňuje novým hovorcom oživiť Lemko. In: Degen, H., Ntoa, S. (eds) Umelá inteligencia v HCI. HCII 2022. Lecture Notes in Computer Science(), zv. 13336. Springer, Cham. https://doi.org/10.1007/978-3-031-05643-7_37

  • Say It Right: Umelý preklad neurónových strojov posilňuje nových hovorcov na oživenie Lemko (2022)

    Say It Right: Umelý preklad neurónových strojov posilňuje nových hovorcov na oživenie Lemko (2022)

    Abstrakt

    Neurónový strojový preklad poháňaný umelou inteligenciou by mohol čoskoro oživiť ohrozené jazyky tým, že umožní novým hovorcom komunikovať v reálnom čase pomocou viet, ktoré sú kvantitatívne bližšie k literárnej norme ako vety rodených hovorcov, a to už od prvého dňa ich cesty k obnove jazyka. Zatiaľ čo Silicon Valley investuje obrovské zdroje do technológie neurónového prekladu schopnej nadľudskej rýchlosti a presnosti pre najpoužívanejšie jazyky sveta, 98 % z nich zostalo pozadu, kvôli nedostatku korpusov: modely neurónového strojového prekladu sa trénujú na miliónoch slov dvojjazyčného textu, ktoré pre väčšinu jazykov jednoducho neexistujú a ich zostavenie stojí státisíce amerických dolárov za jeden jazyk.

    Pre jazyky s nízkymi zdrojmi existuje vynaliezavejší prístup, ak nie efektívnejší: prenosové učenie, ktoré umožňuje jazykom s nižšími zdrojmi profitovať z úspechov jazykov s vyššími zdrojmi. V tomto experimente bola služba neurónového prekladu Google z angličtiny do poľštiny spojená s mojím klasickým, pravidlami riadeným motorom na preklad z angličtiny do ohrozeného, nízkoresursového, východoslovanského jazyka Lemko. Systém dosiahol skóre kvality dvojjazyčného hodnotenia (BLEU) 6,28, čo je niekoľkonásobne lepšie ako služby Google Translate z angličtiny do štandardnej ukrajinčiny (BLEU 2,17), ruštiny (BLEU 1,10) a poľštiny (BLEU 1,70). Nakoniec bol výsledok tohto experimentu, prvá prekladateľská služba z angličtiny do Lemko na svete, sprístupnený na webovej adrese www.LemkoTran.com, aby umožnil novým hovorcom oživiť ich jazyk.

    Noví hovorcovia sú kľúčom k oživeniu jazyka a možnosť „povedať to správne“ v Lemko je teraz na dosah ruky.

    Kľúčové slová: Umelá inteligencia zameraná na človeka, revitalizácia jazyka, Lemko.

    Prosím, citujte ako: Orynycz, P. (2022). Say It Right: AI Neural Machine Translation Empowers New Speakers to Revitalize Lemko. In: Degen, H., Ntoa, S. (eds) Artificial Intelligence in HCI. HCII 2022. Lecture Notes in Computer Science, vol 13336. Springer, Cham. https://doi.org/10.1007/978-3-031-05643-7_37

    1 Úvod

    1.1. Problémy

    Tento experiment si kladie za cieľ prispieť na miestnej úrovni k globálnemu problému straty jazykov, ku ktorej môže dochádzať rýchlosťou jedného jazyka denne, pričom prežiť má len jeden z desiatich jazykov [1, s. 1329]. V čase tlače používa SIL International’s Ethnologue rozšírenú stupňovanú škálu medzigeneračného narušenia Lewis a Simons z roku 2010 na odhad, že 3 018 jazykov je ohrozených [2], čo je 43 % zo 7 001 jednotlivých živých jazykov zaznamenaných v čase tlače v norme Medzinárodnej organizácie pre normalizáciu ISO 639-3 [3]. Medzitým Google Translate obsluhuje len 108 [4] a Facebook 112 [5], čo je začiatok. Napriek tomu je teraz jeden jazyk menej nedostatočne obsluhovaný, keďže výsledok tohto experimentu bol nasadený na webový server ako verejná prekladateľská služba.

    Nové technológie umelej inteligencie lákajú prísľubom pomoci, ktorá okamžite kompenzuje stratu jazyka prostredníctvom interakcie človek-počítač. V mojom predchádzajúcom experimente dosiahli neurónové motory novej generácie vyššie skóre kvality pri preklade z ruštiny a poľštiny do angličtiny ako ľudská kontrola [6, s. 9]. Medzitým Facebook a Google1 investovali obrovské zdroje do poskytovania lepších ako ľudských automatických prekladateľských systémov s nulovými nákladmi pre spotrebiteľa.

    1 Zverejnenie: Pracujem ako platený lingvista a špecialista na kontrolu kvality prekladu pre projekt Google Translate v ruštine, poľštine a ukrajinčine; sídlo je v San Franciscu.

    Nadľudská umelá inteligencia nie je lacná: tréning neurónových jazykových modelov si vyžaduje dvojjazyčné korpusy s počtom slov v stovkách tisíc, a ideálne miliónoch, čo by stálo státisíce dolárov na preklad, sumy presahujúce možnosti väčšiny jazykových komunít s nízkymi zdrojmi. Našťastie, tento experiment ukazuje, že existujú vynaliezavejšie a efektívnejšie spôsoby, ako reagovať na výzvu vytvárania prekladateľských pomôcok na revitalizáciu ohrozených jazykov v prostredí s nízkymi zdrojmi.

    1.2 Doterajšia práca

    Vytvoril som prvý systém strojového prekladu z Lemko do angličtiny na svete a sprístupnil som ho verejnosti. Jeho objektívne skóre kvality prekladu sa zlepšuje: motor dosiahol skóre dvojjazyčného hodnotenia (BLEU) 14,57 v lete 2021, ako bolo prezentované odborníkom na konferencii Interservice/Industry Training, Simulation and Education Conference Národnej asociácie obranného priemyslu a publikované v jej zborníku [6]. Pre porovnanie, ako ľudský prekladateľ pracujúci v terénnych podmienkach, odrezaný od vonkajšieho sveta, som dosiahol BLEU 28,66. Do jesene 2021 motor dosiahol BLEU 15,74, ako bolo oznámené lingvistom, akademikom a širšej komunite na podujatí, ktoré usporiadala University of Pittsburgh.2

    2 Zverejnenie: podujatie sponzorovala Karpatsko-rusínska spoločnosť (Pensylvánia) a University of Pittsburgh mi zaplatila za moju prezentáciu.

    1.3 Študovaný systém

    Lemko je definitívne až vážne ohrozený [6, s. 3, 7, s. 177-178], nízkoresursový [8], oficiálne uznaný menšinový jazyk [9], pravdepodobne pôvodný pre cezhraničné vysočiny južne od metropolitných oblastí Krakova, Tarnova a Rzeszowa; historické vymedzujúce izoglosy budú, dúfajme, témou budúcej práce. Poľský štatistický úrad v roku 2011 zaznamenal 6 279 obyvateľov, pre ktorých bolo Lemko jazykom „zvyčajne používaným doma“ (aj keď okrem poľštiny) [10, s. 3], čo predstavuje 12 % nárast oproti 5 605, pre ktorých bolo Lemko „najčastejšie hovoreným jazykom doma“ v roku 2002 [11, s. 6, 12, s. 7]. V čase tlače sa výsledky nového sčítania sčítavajú.

    Lemko je klasifikovateľné ako východoslovanský jazyk, pretože spĺňa obvyklé kritériá genetických štrukturálnych znakov, z ktorých najvýznamnejším je pleofónia [13, s. 20], pri ktorej sa predpokladá, že samohláska vznikla v praslovanských sekvenciách spoluhlásky C nasledovanej strednou alebo nízkou samohláskou V (*e, alebo *o, s ktorou sa *a zlúčilo [14, s. 366]), nasledovanej likvidou R (t.j. *l alebo *r), nasledovanou ďalšou spoluhláskou C, t.j. CVRC > CVRVC. Na ilustráciu porovnajte staroanglické slovo pre „topiť“, meltan (CVRC) [15, s. 718] s jeho predpokladaným lemkovským príbuzným mołódyj [16, s. 92, 17, s. 150] (CVRC), čo znamená „mladý“. Medzi ďalšie východoslovanské príbuzné patria ukrajinské mołodýj a ruské mołodój [17], obe vykazujúce samohlásku po likvide (CVRVC). Medzitým západoslovanské jazyky nemajú samohlásku pred likvidou; porovnajte poľské młody a slovenské mladý (obe CRVC) [17]. Ďalej sa predpokladá príbuznosť pre iné slová preložiteľné ako „mierny“, vrátane sanskritského mṛdú (CRC) [18, s. 830] a latinského mollis (CVRC ak z *moldvis) [15, 17, 19, s. 323].

    V tomto experimente sa nehodnotilo, ako dobre Lemko spĺňa obvyklé, moderné ukrajinské kritériá genetických štrukturálnych znakov. Avšak, podobnosť medzi Lemko a štandardnou ukrajinčinou bola kvantifikovaná, po prvýkrát v tlači, o ktorej viem. Nižšie, môj Lemko motor dosiahol skóre BLEU 6,28, takmer trikrát vyššie ako skóre ukrajinčiny Google Translate s BLEU 2,17. Ďalšie experimenty by sa mohli vykonať za účelom kvantifikácie podobnosti medzi Lemko, štandardnou ukrajinčinou, poľštinou a rusínčinou, ako je kodifikovaná na Slovensku, ako aj nový pohľad na typologickú klasifikáciu Lemko.

    Množstvo a kvalita zdrojov sa zlepšuje, rovnako ako vynaliezavosť posilnená technológiou. Všetky známe dvojjazyčné korpusy, obsahujúce menej ako sedemdesiattisíc lemkovských slov, boli zhromaždené pre tento experiment. Čistím dvojjazyčný korpus prepisov rozhovorov vedených s rodenými hovorcami v Poľsku a mojich prekladov do angličtiny, ktoré mi zaplatil americký klient a povolil mi ich použiť. Taktiež zostavujem monolingválne korpusy, ktoré v čase tlače celkovo obsahujú 534 512 slov.

    1.4 Hypotéza

    Na základe môjho subjektívneho dojmu ako profesionálneho prekladateľa, že rodení hovorcovia Lemko, s ktorými som robil rozhovory v Poľsku, s väčšou pravdepodobnosťou používali slová s očividnými poľskými príbuznými ako štandardné ukrajinské, som predpokladal, že za inak rovnakých podmienok by sa stroj mohol nakonfigurovať na preklad do Lemko z angličtiny a dosiahnuť objektívne skóre kvality BLEU vyššie ako služby Google Translate pre ukrajinčinu a ruštinu.

    1.5 Predpovede

    Prekladateľský systém Lemko. Predpokladal som, že vyššie uvedený prekladateľský systém dosiahne skóre BLEU 15 pri preklade do Lemko z angličtiny oproti dvojjazyčnému korpusu.

    Google Translate.

    Služba z angličtiny do ukrajinčiny. Predpokladal som, že služba Google Translate z angličtiny do ukrajinčiny dosiahne skóre BLEU 10 oproti dvojjazyčnému korpusu.

    Služba z angličtiny do ruštiny. Predpokladal som, že služba Google Translate z angličtiny do ruštiny dosiahne skóre BLEU 1 oproti dvojjazyčnému korpusu.

    1.6 Metódy a zdôvodnenie

    V záujme rýchlosti, úspory zdrojov a robustnosti bol notebook, ktorý môj zamestnávateľ vyradil ako zastaraný, nakonfigurovaný na preklad do Lemko a na volanie služby Google Cloud Platform Google Translate, ako aj na vyhodnocovanie uvedených prekladov pomocou priemyselného štandardu BLEU.

    1.7 Hlavné výsledky

    Prekladateľský systém z angličtiny do Lemko dosiahol kumulatívne skóre BLEU 6.28431824990417. Medzitým služba Google Translate pre ukrajinčinu dosiahla BLEU 2.16830846776652, jej služba pre ruštinu BLEU 1.10424105952048 a kontrola poľštiny prepísanej do cyriliky BLEU 1.70036447680114.

    2 Materiály a metódy

    Vyššie uvedená hypotéza bola testovaná výpočtom skóre kvality BLEU pre každý prekladateľský systém nastavený spôsobom podrobne opísaným nižšie.

    2.1 Nastavenie

    Hardvér. Experiment sa uskutočnil na notebooku HP Elitebook 850 G2 s procesorom Core i7-5600U 2,6 GHz a 16 gigabajtami pamäte RAM. Môj zamestnávateľ ho vyradil ako zastaraný a v čase tlače bol ponúkaný na predaj za 450 USD.

    Konfigurácia. V menu základného vstupno-výstupného systému (BIOS) bolo zariadenie nakonfigurované tak, aby umožňovalo technológiu virtualizácie (VTx).

    Operačný systém. Windows 10 Professional 64 bit bol nainštalovaný na holý hardvér. Bolo zabezpečené, aby boli povolené funkcie Windows Virtual Machine Platform a Windows Subsystem for Linux. Následne boli nainštalované WSL2 Linux kernel update for x64 stroje (wsl_update_x64.msi) dostupné od spoločnosti Microsoft na https://aka.ms/wsl2kernel.

    Softvér. Inštalátor Docker Desktop pre Windows verzie 4.4.3 (73365) bol stiahnutý z https://www.docker.com/get-started a spustený s možnosťou Install required Windows components for WSL 2 selected.

    Balíčky. Experiment závisel od nižšie uvedených balíkov z Python Package Index.

    SacreBLEU. Verzia 2.0.0 bola nainštalovaná pomocou balíka Python zdokumentovaného na nasledujúcom univerzálnom lokátore zdrojov (URL):
    https://pypi.org/project/sacrebleu/2.0.0/

    Klientska knižnica Google Cloud Translation API. Verzia 2.0.1 bola nainštalovaná pomocou balíka Python zdokumentovaného na univerzálnom lokátore zdrojov (URL) https://pypi.org/project/google-cloud-translate/2.0.1/

    Vyššie uvedené závislosti boli špecifikované v súbore požiadaviek nasledovne:
    google-cloud-translate==2.0.1
    sacrebleu==2.0.0

    Kontajner.

    Zostavenie. Experiment bol spustený v kontajneri Docker s najnovšou verziou programovacieho jazyka Python, ktorá bola v tom čase verzia 3.10.2, bežiaca na operačnom systéme Debian Bullseye 11 Linux architektúry AMD64, so skráteným digestom Secure Hash Algorithm 2 bcb158d5ddb6, získateľným pomocou nasledujúceho príkazu:
    docker pull python@sha256:bcb158d5ddb636fa3aa567c987e7fcf61113307820d466813527ca90d60fedc7

    Runtime. Kontajner bol nakonfigurovaný tak, aby ukladal surové experimentálne dátové súbory do lokálne pripojeného zväzku.

    Hodnotenie kvality prekladu.
    Skóre kvality prekladu bolo vypočítané podľa metriky BLEU pomocou verzie 2.0.0 nástroja SacreBLEU, ktorý vynašiel Post [20].

    Citlivosť na veľké a malé písmená. Hodnotenie sa vykonalo s ohľadom na veľké a malé písmená.

    Tokenizácia. Segmenty boli tokenizované pomocou verzie 13a štandardného skriptu na hodnotenie Workshop on Statistical Machine Translation, interného postupu tokenizácie metriky.

    Metóda vyhladzovania. Použila sa metóda vyhladzovania vyvinutá Národným inštitútom pre štandardy a technológie zamestnancami federálnej vlády Spojených štátov pre ich súpravu nástrojov Multimodal Information Group BLEU, ktorá je treťou technikou opísanou Chenom a Cherrym [21, s. 363], štandardne.

    Podpis. Vyššie uvedené nastavenia vytvorili nasledujúci podpis:
    n refs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0

    Kalibrácia. Nakonfigurovaný ako vyššie, stroj produkuje nasledujúci výstup:

    Segment 1031.
    Anglický zdrojEverything was there.
    Lemko referencia a transliteráciaВшытко там было.Všŷtko tam bŷlo.
    Lemkotran.com hypotéza a transliteráciaВшытко там было.Všŷtko tam bŷlo.
    SkóreBLEU = 100.00 100.0/100.0/100.0/100.0 (BP = 1.000 ratio = 1.000 hyp_len = 4 ref_len = 4)

    Vysvetlenie. Hypotetický segment bol identický s referenčným a stroj dosiahol perfektné skóre BLEU 100.

    Segment 179.
    Anglický zdrojI don't remember what year.
    Lemko referencia a transliteráciaНе памятам в котрым році.Ne pamjatam v kotrŷm roci.
    Lemkotran.com hypotéza a transliteráciaНі памятам, в котрым році.Ni pamjatam, v kotrŷm roci.
    SkóreBLEU = 43.47 71.4/50.0/40.0/25.0 (BP = 1.000 ratio = 1.167 hyp_len = 7 ref_len = 6)

    Vysvetlenie. Hypotéza sa líšila od referencie o dva znaky. Stroj nesprávne preložil časticu negujúcu sloveso, použil slovo pre „nie“ (ni) namiesto očakávaného slova pre „nie“ (ne). To sa odvtedy do značnej miery opravilo. Stroj tiež pridal čiarku za pamjatam, čo znamená „pamätám si“. To znížilo skóre z perfektného skóre 100 na 43,47.

    Kontrola. Keďže korpus je založený na rozhovoroch uskutočnených v Poľsku, preklady do poľštiny boli použité ako kontrola. Boli transliterované do cyriliky obrátením pravidiel pre transliteráciu mien Lemko, ktoré stanovilo poľské Ministerstvo vnútra a administratívy [22, str. 6564]. Poľské nosové samohlásky boli rozložené na samohlásku plus nosovú záverovú spoluhlásku, okrem prípadov pred aproximantmi, kde boli priamo denazalizované. Na konci slova bola predná nosová samohláska /ę/ jednoducho denazalizovaná a zadná /ą/ bola transliterovaná, akoby po nej nasledovala zubná záverová spoluhláska.

    3 Výsledky

    Motor dostupný verejnosti na www.LemkoTran.com obsadil prvé miesto s kumulatívnym skóre kvality prekladu BLEU 6,28, čo je takmer trojnásobok skóre druhého v poradí, služby Google Translate z angličtiny do ukrajinčiny (BLEU 2,17). Ďalej nasledovala jej služba z angličtiny do poľštiny (BLEU 1,70) a jej služba z angličtiny do ruštiny bola na poslednom mieste (BLEU 1,10).

    Tabuľka 1. Kvalita prekladu z angličtiny do Lemko: LemkoTran.com verzus Google Translate

    3.1 Výsledky podľa služby strojového prekladu

    Kontrola. Pri transliterácii do cyriliky dosiahli preklady Google Translate do štandardnej poľštiny skóre BLEU na úrovni korpusu 1,70. Ukážky jeho výkonov sú nasledovné:

    Segment 2174.
    Anglický zdrojWe had still been in Izby, right.
    Lemko referenčný text a transliteráciaТо мы іщы были в Ізбах, так.To mŷ iščŷ bŷly v Izbach, tak.
    Poľská hypotéza a transliteráciaБилісьми єще в Ізбах, так.Byliśmy jeszcze w Izbach, tak.
    SkóreBLEU = 46.20
    Segment 854.
    Anglický zdrojAnd that's what it's all about.
    Lemko referenčný text a transliteráciaІ о то ходит.I o to chodyt.
    Poľská hypotéza a transliteráciaІ о то власьнє ходзі.I o to właśnie chodzi.
    SkóreBLEU = 32.47
    Segment 217.
    Anglický zdrojAnd that's what it's all about.
    Lemko referenčný text a transliteráciaТак мі повіл.Tak mi povil.
    Poľská hypotéza a transliteráciaТак мі повєдзял.Tak mi powiedział.
    SkóreBLEU = 35.36

    Hybridný anglicko-Lemko motor. Motor voľne dostupný verejnosti na URL adrese www.LemkoTran.com dosiahol skóre BLEU na úrovni korpusu 6,28.

    Segment 1031.
    Anglický zdrojEverything was there.
    Lemko referenčný text a transliteráciaВшытко там было.Všŷtko tam bŷlo.
    Lemkotran.com hypotéza a transliteráciaВшытко там было.Všŷtko tam bŷlo.
    SkóreBLEU = 100.00
    Segment 1445.
    Anglický zdrojBut that officer took that medal and said,
    Lemko referenčný text a transliteráciaАле тот офіцер взял тот медаль і повідат:Ale tot oficer vzial tot medal' i povidat:
    Lemkotran.com hypotéza a transliteráciaАле тот офіцер взял тот медаль і повіл:Ale tot oficer vzial tot medal' i povil:
    SkóreBLEU = 75.06
    Segment 217.
    Anglický zdrojThat's what he said to me.
    Lemko referenčný text a transliteráciaТак мі повіл.Tak mi povil.
    Lemkotran.com hypotéza a transliteráciaТак мі повіл.Tak mi povil.
    SkóreBLEU = 100.00

    Ukrajinčina. Preklady Google Translate do štandardnej ukrajinčiny dosiahli skóre BLEU na úrovni korpusu 2,35.

    Segment 2419.
    Anglický zdrojWhere and when?
    Lemko referenčný text a transliteráciaДе і коли?De i koly?
    Ukrajinská hypotéza a transliteráciaДе і коли?De i koly?
    SkóreBLEU = 100.00
    Segment 1096.
    Anglický zdrojWe were there for three months.
    Lemko referenčný text a transliteráciaТам зме были три місяці.Tam zme bŷly try misiaci.
    Ukrajinská hypotéza a transliteráciaМи були там три місяці.My buly tam try misjaci.
    SkóreBLEU = 30.21
    Segment 2513.
    Anglický zdrojWell, here to the west.
    Lemko referenčný text a transliteráciaНо то ту на захід.No to tu na zachid.
    Ukrajinská hypotéza a transliteráciaНу, тут на захід.Nu, tut na zachid.
    SkóreBLEU = 30.21

    Ruština. Služba Google Translate z angličtiny do ruštiny dosiahla skóre BLEU na úrovni korpusu 1,10.

    Segment 432.
    Anglický zdrojNobody knew.
    Lemko referenčný text a transliteráciaНихто не знал.Nychto ne znal.
    Ruská hypotéza a transliteráciaНикто не знал.Nikto ne znal.
    SkóreBLEU = 59.46
    Segment 2751.
    Anglický zdrojWhat did they expel us for?
    Lemko referenčný text a transliteráciaЗа што нас выгнали?Za što nas vŷhnaly?
    Ruská hypotéza a transliteráciaЗа что нас выгнали?Za čto nas vygnali?
    SkóreBLEU = 42.73
    Segment 2164.
    Anglický zdrojBrother went off to war.
    Lemko referenčný text a transliteráciaБрат пішол на войну.Brat pišol na vojnu.
    Ruská hypotéza a transliteráciaБрат ушел на войну.Brat ušel na vojnu.
    SkóreBLEU = 42.73

    4 Diskusia

    Skóre BLEU na úrovni korpusu pre prekladový systém Lemko 6,28 naznačuje, že hoci je ešte veľa práce, veci sú na správnej ceste. Štandardné ruské skóre BLEU 1,10 naznačuje, že Lemko je menej podobné ruštine ako poľštine (BLEU 1,70). Možno by použitie predrevolučnej ortografie mohlo zvýšiť skóre ruštiny, ale to by bol drahý experiment s malým zjavným prínosom.

    Transliterované štandardné poľské kontrolné skóre podobnosti BLEU 1,70 naznačuje menšie rušenie zo strany dominantného jazyka v Poľsku, než by sa dalo očakávať. Bolo by zaujímavé prepracovať experiment, kde by sa na poľštinu aplikovalo niekoľko výpočtovo nenáročných a zjavných zvukových korešpondencií (napríklad denazalizácia *ę na /ja/ a *ǫ na /u/, retrakcia *i na /y/ a zmena *g na /h/ [23]), aby sa zistilo, či by potom dosiahla vyššie skóre ako štandardná ukrajinčina.

    Zhrnutie: Lemko bolo syntetizované v laboratóriu a možnosť jeho produkcie bola daná do rúk novým aj rodeným hovorcom. Po dôkladnej generálnej oprave motora a rozšírení glosára je ďalším krokom objektívne zmerať a, ak je to možné, nechať hovorcami subjektívne ohodnotiť kvalitu syntetického Lemko v porovnaní s tým, ktoré produkujú rodení hovorcovia. Deň, keď noví hovorcovia jazykov s nízkymi zdrojmi môžu použiť strojový preklad na to, aby začali komunikovať vo svojom jazyku cez noc, je bližšie, rovnako ako deň, keď sa jazyk Lemko pripojí k radom tých, ktoré boli predtým ohrozené, ale teraz sú revitalizované.

    Poďakovanie. Rád by som poďakoval svojmu kolegovi Mingovi Qianovi z Peraton Labs za inšpiráciu k uskutočneniu tohto experimentu a Brianovi Stensrudovi zo Soar Technology, Inc. za to, že nás predstavil, ako aj za jeho povzbudenie.

    Taktiež by som rád poďakoval svojej priateľke Corinne Caudill za jej povzbudenie a osobný záujem o projekt, ako aj za to, že ma predstavila prezidentke Karpatsko-rusínskej spoločnosti Maryann Sivak z University of Pittsburgh, ktorej by som rád poďakoval za príležitosť prezentovať moju prácu.

    Taktiež by som rád poďakoval Marii Silvestri z nadácie John and Helen Timo Foundation za uskutočnenie rozhovorov s rodenými hovorcami Lemko a darovanie prepisov a mojich prekladov na výskum a vývoj.

    Rád by som poďakoval Achimovi Rabusovi z Univerzity vo Freiburgu a Yvesovi Scherrerovi z Helsinskej univerzity za ich záujem o projekt a nápady.

    Taktiež by som rád poďakoval Myhal’ovi Lŷžečkovi z blogu o technológiách menšinových jazykov InterFyisa za jeho skorý záujem o projekt a komunitnú osvetu.

    Taktiež by som rád poďakoval kolegovi, rodákovi zo Zahoczewie, Markovi Łyszykovi za jeho záujem o projekt a komunitnú osvetu.

    Na záver by som rád poďakoval svojmu spoluautorovi a kolegovi z Antech Systems Inc. Tomovi Dobrymu za jeho povzbudenie a vedenie.

    Referencie

    1. ^ Graddol, D.: Budúcnosť jazyka. Science, 303(5662), 1329-1331 (2004). https://doi.org/10.1126/science.1096546

    2. ^ Eberhard, D. M., Simons, G. F., & Fennig, C. D.: Ethnologue: Jazyky sveta, SIL International. Dvadsiate štvrté vydanie. SIL International, Dallas (2021). Online verzia: Koľko jazykov je ohrozených?, https://www.ethnologue.com/guides/how-many-languages-endangered, naposledy prístupné 11. 2. 2022.

    3. ^ Kódové tabuľky ISO 639, https://iso639-3.sil.org/code_tables/639/data, naposledy prístupné 11. 2. 2022.

    4. ^ Jazyková podpora, https://cloud.google.com/translate/docs/languages, naposledy prístupné 11. 2. 2022.

    5. ^ Vybrať jazyk, https://m.facebook.com/language.php, naposledy prístupné 11. 2. 2022.

    6. ^ ^ Orynycz, P., Dobry, T., Jackson, A., & Litzenberg, K.: Áno, hovorím… Neurónový strojový preklad AI vo viacjazyčnom tréningu. In: Zborník príspevkov z konferencie Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2021, príspevok č. 21176. National Training and Simulation Association, Orlando (2021). https://www.xcdsystem.com/iitsec/proceedings/index.cfm?Year=2021&AbID=96953&CID=862

    7. ^ Duć-Fajfer, O.: Literatura a proces rozwoju i rewitalizacja tożsamości językowej na przykładzie literatury łemkowskiej. In: Olko, J., Wicherkiewicz, T., Borges, R. (eds.), Integrované stratégie pre revitalizáciu jazyka, str. 175–200. Prvé vydanie. Fakulta „Artes Liberales“, Varšavská univerzita, Varšava (2016).

    8. ^ Scherrer, Y., Rabus, A.: Neurónové morfosyntaktické značkovanie pre rusínčinu. In: Mitkov, R., Tait, J., Boguraev, B. (eds.), Natural Language Engineering, 25(5), 633–650. Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/S1351324919000287

    9. ^ Výhrady a vyhlásenia k Zmluve č. 148 – Európska charta regionálnych alebo menšinových jazykov (ETS č. 148), https://www.coe.int/en/web/conventions/full-list?module=declarations-by-treaty&numSte=148&codeNature=1&codePays=POL, naposledy prístupné 11. 2. 2022.

    10. ^ Formularz indywidualny, https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultstronaopisowa/5781/1/1/nsp_2011_badanie__pelne_wykaz_pytan.pdf, naposledy prístupné 11. 2. 2022.

    11. ^ Narodowy Spis Powszechny Ludności i Mieszkań 2002 r. z 20 maja (formularz A) https://stat.gov.pl/gfx/portalinformacyjny/userfiles/_public/spisy_powszechne/nsp2002-form-a.pdf, naposledy prístupné 11. 2. 2022.

    12. ^ IV Raport dotyczący sytuacji mniejszości narodowych i etnicznych oraz języka regionalnego w Rzeczypospolitej Polskiej – 2013, http://mniejszosci.narodowe.mswia.gov.pl/download/86/14637/TekstIVRaportu.pdf, naposledy prístupné 11. 2. 2022.

    13. ^ Vaňko, J.: Jazyk slovenských Rusínov. East European Monographs, New York (2000).

    14. ^ Forston, B., IV: Indoeurópsky jazyk a kultúra. Blackwell Publishing, Oxford (2004).

    15. ^ ^ Pokorny, J.: Indogermanisches etymologisches Wörterbuch, Bern, 1959.

    16. ^ Horoszczak, J.: Słownik łemkowsko-polski, polsko-łemkowski. Rutenika, Varšava (2004).

    17. ^ ^ ^ ^ Vasmer, M. Russisches etymologisches Wörterbuch. Zweiter Band. Carl Winter, Universitätsverlag, Heidelberg (1955).

    18. ^ Monier-Williams, M.: Sanskrt-anglický slovník etymologicky a filologicky usporiadaný so zvláštnym zreteľom na príbuzné indoeurópske jazyky, The Clarendon Press, Oxford (1899).

    19. ^ Derksen, R.: Etymologický slovník slovanskej zdedenej lexiky. In: Lubotsky, A. (ed.) Leiden Indo-European Etymological Dictionary Series, vol. 4, Koninklijke Brill, Leiden (2008).

    20. ^ Post, M.: Výzva na jasnosť pri uvádzaní skóre BLEU. In: Zborník príspevkov z Tretej konferencie o strojovom preklade (WMT), vol. 1, str. 186–191. Association for Computational Linguistics, Brusel (2018). https://aclanthology.org/W18-63

    21. ^ Chen B., Cherry, C.: Systematické porovnanie vyhladzovacích techník pre BLEU na úrovni viet. In: Zborník príspevkov z Deviateho workshopu o štatistickom strojovom preklade, str. 362–367. Association for Computational Linguistics, Baltimore (2014). http://dx.doi.org/10.3115/v1/W14-33

    22. ^ Ministerstvo vnútra a administratívy: Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 30 maja 2005 r. w sprawie sposobu transliteracji imion i nazwisk osób należących do mniejszości narodowych i etnicznych zapisanych w alfabecie innym niż alfabet łaciński. In: Dziennik Ustaw č. 102, str. 6560–6573. Rządowe Centrum Legislacji, Varšava (2005).

    23. ^ Shevelov, G.: O chronológii H a nového G v ukrajinčine. In: Harvard Ukrainian Studies, vol. 1, č. 2, str. 137–152. Harvard Ukrainian Research Institute, Cambridge (1977). https://www.jstor.org/stable/40999942

  • Lemko земля ⟨zemlja⟩ ‚zem‘

    Lemko земля ⟨zemlja⟩ ‚zem‘

    Význam

    Lemkovské podstatné meno земля ⟨zemlja⟩ je preložiteľné do angličtiny ako „zem“, „pôda“ alebo „podlaha“, v závislosti od kontextu. Do poľštiny sa prekladá ako ziemia.

    Ako vysloviť a zapamätať si

    Prvá slabika sa vyslovuje ako anglické zen, ale s hláskou ⟨m⟩ na konci. Druhá slabika sa vyslovuje ako v „la la la“. Na zapamätanie si predstavte zenového mnícha meditujúceho v blate vonku a hovoriaceho „La la la, nepočujem vás!“

    Etymológia

    Lemkovské podstatné meno земля ⟨zemlja⟩ ‚zem‘ pochádza z praslovanského *zemļà (Derksen, 2008, s. 542). Kognáty zahŕňajú staroslovienske землꙗ (ⰸⰵⰿⰾⱑ) ⟨zemlja⟩ avestské 𐬰𐬃‎ ⟨zā̊⟩ ‚zem‘ (akuzatívna forma 𐬰𐬆𐬨‎ ⟨zəm⟩), sanskritské क्ष ⟨kṣá⟩ ‚zem‘, perzské زمین‎ ⟨zamin⟩ ‚zem‘, starogrécke χθών ⟨khthṓn⟩ „zem“, chetitské 𒋼𒂊𒃷 ⟨tēkan⟩, (genitív 𒁖𒈾𒀸 ⟨taknas⟩), latinské humus ‚pôda‘ a starogrécke χαμαί ⟨khamaí⟩ ‚na zemi‘ (Vasmer 1953, s. 452–453, pozri tiež Derksen, 2008, s. 542 a Pokorny, 1959, s. 415).

    Skloňovanie

    Lemko земля ⟨zemlja⟩ je mäkké podstatné meno prvej deklinácie, ktoré sa skloňuje takto:

    Jednotné číslo

    PádLemkoPoľštinaUkrajinčinaRuština
    Nomзе́мля ⟨zémlja⟩ziemiaземля́земля́
    Genзе́mľi ⟨zémli⟩ziemiземлі́земли́
    Datзе́mly ⟨zémly⟩aziemiземлі́земле́
    Akuzзе́mľu ⟨zémlju⟩ziemięзе́mľuзе́mľu
    Inštrзе́mľom ⟨zémlʹom⟩ziemiąземле́юземлёй
    Lokзе́mly ⟨zémly⟩aziemiземлі́земле́
    Vokзе́mľo ⟨zémlʹo⟩bziemioзе́mle
    Skloňovanie lemkovského mäkkého podstatného mena prvej deklinácie земля ⟨zemlja⟩ ‚zem‘ v jednotnom čísle v porovnaní s jeho poľskými, ukrajinskými a ruskými kognátmi.

    a Pyrtej (2013, s. 38) uvádza зе́млі ⟨zémli⟩ ako datívne a lokálne tvary jednotného čísla, avšak Fontański a Chomiak (2000, s. 64) uvádzajú зе́mly ⟨zémly⟩.

    b Fontański a Chomiak (2000, s. 64) uvádzajú земле ⟨zemle⟩ ako alternatívny vokatívny tvar jednotného čísla.

    Množné číslo

    PádLemkoPoľštinaUkrajinčinaRuština
    Nomзе́mľi ⟨zémli⟩ziemieзе́mľiзе́mly
    Genзе́mľ ⟨zémlʹ⟩ziemземе́ľземе́ľ
    Datзе́mľam ⟨zémljam⟩ziemiomзе́mľamзе́mľam
    Akuzзе́mľi ⟨zémli⟩ziemieзе́mľiзе́mly
    Inštrzemľámy ⟨zemljámy⟩ziemiamiзе́mľamiзе́mľami
    Lokзе́mľach ⟨zémljax⟩ziemiachзе́mľachзе́mľach
    Vokзе́mľi ⟨zémli⟩ziemieзе́mľi
    Skloňovanie lemkovského mäkkého podstatného mena prvej deklinácie земля ⟨zemlja⟩ ‚zem‘ v množnom čísle v porovnaní s jeho poľskými, ukrajinskými a ruskými kognátmi.

    Referencie

    ^ Derksen, Rick. (2008). V Lubotsky, A. (Ed.), Leiden Indo-European Etymological Dictionary Series: Vol. 4. Etymological Dictionary of the Slavic Inherited Lexicon. Koninklijke Brill NV. https://brill.com/view/title/12607

    ^ Fontański, H., Chomiak, M. (2000). Ґраматыка лемківского языка [Gramatika lemkovského jazyka]. Śląsk.

    ^ Pokorny, Julius. (1959). Indogermanisches Etymologisches Wörterbuch [Indogermánsky etymologický slovník]. A. Francke AG Verlag Bern.

    ^ ^ Pyrtej, P. (2013). Лемківські говірки. Фонетика і морфологія. Об’єднання лемків [Lemkovské nárečia. Fonetika a morfológia]. Обʼєднання лемків [Lemkovská únia].

    ^ Vasmer, M. (1953). Russisches Etymologisches Wörterbuch, Erster Band: A – K [Ruský etymologický slovník, Zväzok prvý: A – K]. Carl Winter Universitätsverlag.

  • Lemko рік ⟨rik⟩ ‚rok‘

    Lemko рік ⟨rik⟩ ‚rok‘

    Naučte sa význam, pôvod a morfológiu Lemko mužského podstatného mena рікrik⟩, ako aj to, ako si ho zapamätať.

    Preklad

    Formy Lemko slova рікrik⟩ uvedené nižšie sú preložiteľné do angličtiny ako „year“ alebo „years“.

    Mnemotechnická pomôcka

    Na zapamätanie si Lemko slova рікrik⟩ si anglicky hovoriaci môžu predstaviť niečo zapáchajúce na silvestrovskej párty (Lemko rik a anglické reek sa vyslovujú prakticky rovnako).

    Etymológia

    Z praslovanského *rokŭ ‚čas‘, samotné deverbálne podstatné meno z *rekti ‚povedať‘, ktorého príbuzné slová zahŕňajú staroslovienčinu рокъ (ⱃⱁⰽⱏ) ⟨rokŭ⟩ ‚čas, termín‘, ako aj možno anglické reckon, sanskritské रचयति ⟨racáyati⟩ „konštruovať, pracovať“, gótske 𐍂𐌰𐌷𐌽𐌾𐌰𐌽 ⟨rahnjan⟩ ‚reckon‘ (Pokorny 1959, s. 863, pozri tiež Vasmer, 1955, s. 532) a waleské rhegi ‚preklínať‘ (Derksen, 2008, s. 433, 438).

    Záznam pre praslovanské podstatné meno *rokъ na strane 438 Derksenovho Etymological Dictionary of the Slavic Inherited Lexicon.
    Záznam pre praslovanské sloveso *rekti na strane 433 Derksenovho Etymological Dictionary of the Slavic Inherited Lexicon.
    Záznam rē̆k- na strane 863 Pokorného Indo-Germanic Etymological Dictionary (1959), ktorý spomína staroslovienčinu rokъ.
    Záznam pre moskovské ruské podstatné meno рокrok⟩ vo Vasmerovom Russian Etymological Dictionary (1955, s. 532), ktorý spomína ukrajinské rik.

    Skloňovanie

    Jednotné číslo

    PádLemkoPoľštinaUkrajinčinaRuština
    Nominatívрік ⟨rikarokрікго́д
    Genitívро́ка ⟨rókabrokuро́куго́да
    Datívроко́ви ⟨rókovybrokowiро́кові, ро́куго́ду
    Akuzatívрік ⟨rikarokрікго́д
    Inštrumentálро́ком ⟨rókomcrokiemро́комго́дом
    Lokálро́ці ⟨rócicrokuро́ціго́де
    Vokatívроку ⟨rókurokuро́куго́д

    a Nominatív a akuzatív Lemko рік ⟨rik⟩ ‚rok‘ je rovnaký ako genitív množného čísla ріка ⟨rika⟩ ‚rieka‘. Horoszczak (2004, s. 330) uvádza nominatív a akuzatív jednotného čísla ako „рик ryk⟩, рікrik⟩“.

    b Pozri Pyrtej (2013, s. 46) pre genitívne a datívne formy jednotného čísla Lemko рік ⟨rik⟩ ‚rok‘. Fotografia nižšie.

    Tabuľka na strane 46 Pyrtejovej Lemko Dialects. Phonetics and Morphology

    c Pozri Pyrtej (2013, s. 47) pre inštrumentálne a lokálne formy jednotného čísla Lemko рік ⟨rik⟩ ‚rok‘. Fotografia nižšie.

    Tabuľka na strane 47 Pyrtejovej Lemko Dialects. Phonetics and Morphology

    Množné číslo

    PádLemkoPoľštinaUkrajinčinaRuština
    Nominatívро́кы ⟨rókŷlataро́ки́го́ды, года́, лета́
    Genitívро́ків ⟨rókivlatро́кі́вгодо́в, ле́т
    Datívро́кам ⟨rókamblatomро́ка́мгода́м, лета́м
    Akuzatívро́кы ⟨rókŷlataро́ки́го́ды, года́, лета́
    Inštrumentálрока́ми ⟨rokámylatamiро́ка́мигода́ми, лета́ми
    Lokálро́ках ⟨rókachlatachро́ка́хгода́х, лета́х
    Vokatívро́кы ⟨rókŷlataро́ки́го́ды, года́, лета́
    ZdrojZdroj

    Referencie

    ^ Derksen, Rick. (2008). V Lubotsky, A. (Ed.), Leiden Indo-European Etymological Dictionary Series: Vol. 4. Etymological Dictionary of the Slavic Inherited Lexicon. Koninklijke Brill NV. https://brill.com/view/title/12607

    Fontański, H., Chomiak, M. (2000). Ґраматыка лемківского языка [Gramatika Lemko jazyka]. Śląsk.

    ^ Horoszczak, J. (2004). Słownik łemkowsko-polski, polsko-łemkowski [Lemko-poľský a poľsko-lemko slovník]. Rutenika.

    ^ Pokorny, Julius. (1959). Indogermanisches Etymologisches Wörterbuch [Indo-germánsky etymologický slovník]. A. Francke AG Verlag Bern.

    ^ ^ Pyrtej, P. (2013). Лемківські говірки. Фонетика і морфологія. Об’єднання лемків [Lemko dialekty. Fonetika a morfológia]. Обʼєднання лемків [Lemko únia].

    ^ Vasmer, M. (1955). Russisches Etymologisches Wörterbuch, Zweiter Band: L–Ssuda [Ruský etymologický slovník, Zväzok druhý: L–Ssuda]. Carl Winter Universitätsverlag.

  • Lemko ukazovacie zámená

    Lemko ukazovacie zámená

    Nižšie nájdete preklad, etymológiu, úplné skloňovacie tabuľky a referencie pre Lemko ukazovacie zámená тотtot⟩ s významom „tento“ alebo „tieto“, a тамтотtamtot⟩ s významom „tamten“ alebo „tamtie“.

    Preklad

    Lemko ukazovacie zámeno v slovníkovej (mužský rod jednotného čísla) forme тотtot⟩ je preložiteľné do angličtiny ako „this“ v jednotnom čísle a „these“ v množnom čísle. Ak je predponou тамtam⟩ (napríklad тамтотtamtot⟩), je preložiteľné ako „that“ v jednotnom čísle a „those“ v množnom čísle.

    Etymológia

    Lemko ukazovacie zámeno v slovníkovej (mužský rod jednotného čísla) forme тотtot⟩ pochádza z rekonštruovaného praslovanského *. V širšom kontexte súvisí s anglickým slovom that a sanskritským तत्tat⟩ (Vasmer, 1958, s. 128), preložiteľným ako „tento“ a objavujúcim sa v slávnom verši तत्त्वमсиtat tvam asi⟩ s významom „Ty si to“.

    Záznam pre moskovské ruské ukazovacie zámeno тотtot⟩ vo Vasmerovom diele Russisches Etymologisches Wörterbuch, Dritter Band: Sta–Ÿ (1958, s. 128).

    Blízke („tento“ a „tieto“)

    Jednotné číslo („Tento“)

    Všetky nasledujúce tvary sú preložiteľné do angličtiny ako „this“.

    Mužský rod

    PádLemkoPoľštinaUkrajinčinaRuština
    Nominatívтот ⟨totatenцейэ́тот
    Genitívто́го ⟨tóhotegoцього́э́того
    Datívто́му ⟨tómutemuцьому́э́тому
    Akuzatív (neživotné)тот ⟨tota
    tenцейэ́тот
    Akuzatív
    (životné)
    то́го ⟨tóhotegoцього́э́того
    Inštrumentálтым ⟨tŷmbtymцимэ́тим
    Lokálтым ⟨tŷmctymцьо́му, цімэ́том

    a Pyrtej (2013) uvádza той ⟨toj⟩ ako alternatívnu formu Lemko mužského nominatívu (ako aj akuzatívu neživotného) jednotného čísla ukazovacieho zámena (s. 107). Táto forma chýba u Fontańského & Chomiaka (2000, s. 97).

    b Pyrtej (2013) uvádza тим ⟨tym⟩ ako Lemko formu mužského inštrumentálu jednotného čísla ukazovacieho zámena (s. 107), na rozdiel od formy тымtŷm⟩, ktorá sa objavuje u Fontańského & Chomiaka (2000, s. 97).

    c Pyrtej (2013) uvádza тім ⟨tim⟩ ako Lemko formu mužského lokálu jednotného čísla ukazovacieho zámena (s. 107), na rozdiel od formy тымtŷm⟩, ktorá sa objavuje u Fontańského & Chomiaka (2000, s. 97).

    Ženský rod

    PádLemkoPoľštinaUkrajinčinaRuština
    Nominatívто́та ⟨tóta⟩ataцяэ́та
    Genitívтой ⟨toj⟩tejціє́їэ́той
    Datívтій ⟨tij⟩tejційэ́той
    Akuzatívто́ту ⟨tótu⟩bцюэ́ту
    Inštrumentálтом ⟨tom⟩ціє́юэ́той, э́тою
    Lokálтій ⟨tij⟩tejційэ́той

    a Pyrtej (2013) uvádza та ⟨ta⟩ a та́я ⟨tája⟩ ako alternatívne formy Lemko ženského nominatívu jednotného čísla ukazovacieho zámena (s. 107). Tieto formy chýbajú u Fontańského & Chomiaka (2000, s. 97).

    b Pyrtej (2013) uvádza ту ⟨tu⟩ a ту́ю ⟨túju⟩ ako alternatívne formy Lemko ženského akuzatívu jednotného čísla ukazovacieho zámena (s. 107). Tieto formy chýbajú u Fontańského & Chomiaka (2000, s. 97).

    Stredný rod

    PádLemkoPoľštinaUkrajinčinaRuština
    Nominatívто́то ⟨tóto⟩atoцеэ́то
    Genitívто́го ⟨tóho⟩tegoцього́э́того
    Datívто́му ⟨tómu⟩temuцьому́э́тому
    Akuzatívто́то ⟨tóto⟩
    toцейэ́то
    Inštrumentálтым ⟨tŷm⟩btymцимэ́тим
    Lokálтым ⟨tŷm⟩ctymцьо́му, цімэ́том

    a Pyrtej (2013) uvádza то ⟨to⟩ a то́є ⟨tóje⟩ ako alternatívne formy Lemko stredného nominatívu jednotného čísla ukazovacieho zámena (s. 107). Tieto formy chýbajú u Fontańského & Chomiaka (2000, s. 97).

    b Pyrtej (2013) uvádza тим ⟨tym⟩ ako Lemko formu stredného inštrumentálu jednotného čísla ukazovacieho zámena (s. 107), na rozdiel od formy тымtŷm⟩, ktorá sa objavuje u Fontańského & Chomiaka (2000, s. 97).

    c Pyrtej (2013) uvádza тім ⟨tim⟩ ako Lemko formu stredného lokálu jednotného čísla ukazovacieho zámena (s. 107), na rozdiel od formy тымtŷm⟩, ktorá sa objavuje u Fontańského & Chomiaka (2000, s. 97).

    Referencie
    Fontański & Chomiak (2000, s. 97).
    Pyrtej (2013, s. 107).

    Množné číslo („Tieto“)

    Nasledujúce formy sa používajú bez ohľadu na gramatický rod a sú preložiteľné do angličtiny ako „these“.

    PádLemkoPoľštinaUkrajinčinaRuština
    Nominatívто́ты ⟨tótŷte/ciціэ́ти
    Genitívтых ⟨tŷch⟩tychцихэ́тих
    Datívтым ⟨tŷm⟩tymцимэ́тим
    Akuzatív (neživotné)то́ты ⟨tótŷteціэ́ти
    Akuzatív (životné)тых ⟨tŷch
    tychцихэ́тих
    Inštrumentálты́ма ⟨tŷma⟩tymiци́миэ́тими
    Lokálтых ⟨tŷch⟩tychцихэ́тих

    Vzdialené („tamten“, „tamtie“)

    Na vyjadrenie vzdialenosti od hovoriaceho jednoducho predponujte všetky vyššie uvedené zámená Lemko slovom там ⟨tam⟩. To je ekvivalentné tomu, ako keby ste v angličtine povedali „that“ namiesto „this“ alebo „those“ namiesto „these“.

    Jednotné číslo („Tamten“)

    PádMužský rodŽenský rodStredný rod
    Nominatívтамтот ⟨tamtotaтамто́та ⟨tamtóta⟩dтамто́то ⟨tamtóto⟩x
    Genitívтамто́го ⟨tamtóhoтамтой ⟨tamtoj⟩тамто́го ⟨tamtóho⟩
    Datívтамто́му ⟨tamtómuтамтій ⟨tamtij⟩тамто́му ⟨tamtómu⟩
    Akuzatív (neživotné)тамтот ⟨tamtota
    тамто́ту ⟨tamtótu⟩eтамто́то ⟨tamtóto
    Akuzatív
    (životné)
    тамто́го ⟨tamtóhoтамто́ту ⟨tamtótu⟩eтамто́то ⟨tamtóto
    Inštrumentálтамтым ⟨tamtŷmbтамтом ⟨tamtom⟩тамтым ⟨tamtŷm⟩b
    Lokálтамтым ⟨tŷmcтамтій ⟨tamtij⟩тамтым ⟨tamtŷmc

    a Pyrtej (2013) uvádza той ⟨toj⟩ ako alternatívnu formu Lemko mužského nominatívu (ako aj akuzatívu neživotného) jednotného čísla ukazovacieho zámena (s. 107). Táto forma chýba u Fontańského & Chomiaka (2000, s. 97).

    b Pyrtej (2013) uvádza тим ⟨tym⟩ ako Lemko formu mužského a stredného inštrumentálu jednotného čísla ukazovacieho zámena (s. 107), na rozdiel od formy тымtŷm⟩, ktorá sa objavuje u Fontańského & Chomiaka (2000, s. 97).

    c Pyrtej (2013) uvádza тім ⟨tim⟩ ako Lemko formu mužského a stredného lokálu jednotného čísla ukazovacieho zámena (s. 107), na rozdiel od formy тымtŷm⟩, ktorá sa objavuje u Fontańského & Chomiaka (2000, s. 97).

    d Pyrtej (2013) uvádza та ⟨ta⟩ a та́я ⟨tája⟩ ako alternatívne formy Lemko ženského nominatívu jednotného čísla ukazovacieho zámena (s. 107). Tieto formy chýbajú u Fontańského & Chomiaka (2000, s. 97).

    e Pyrtej (2013) uvádza ту ⟨tu⟩ a ту́ю ⟨túju⟩ ako alternatívne formy Lemko ženského akuzatívu jednotného čísla ukazovacieho zámena (s. 107). Tieto formy chýbajú u Fontańského & Chomiaka (2000, s. 97).

    f Pyrtej (2013) uvádza то ⟨to⟩ a то́є ⟨tóje⟩ ako alternatívne formy Lemko stredného nominatívu jednotného čísla ukazovacieho zámena (s. 107). Tieto formy chýbajú u Fontańského & Chomiaka (2000, s. 97).

    Množné číslo („Tamtie“)

    PádLemkoPoľštinaUkrajinčinaRuština
    Nominatívтамто́ты ⟨tamtótŷtamte/tamciтіте
    Genitívтамтых ⟨tamtŷch⟩tamtychтихтех
    Datívтамтым ⟨tamtŷm⟩tamtymтимтем
    Akuzatív (neživotné)тамто́ты ⟨tamtótŷtamteтіте
    Akuzatív (životné)тамтых ⟨tamtŷch
    tamtychтихтех
    Inštrumentálтамты́ма ⟨tamtŷma⟩tamtymiти́мите́mi
    Lokálтых ⟨tamtŷch⟩tamtychтихтех

    Referencie

    1. ^ Fontański, H., Chomiak, M. (2000). Ґраматыка лемківского языка [Gramatika Lemko jazyka]. Śląsk.

    2. ^ Pyrtej, P. (2013). Лемківські говірки. Фонетика і морфологія. Об’єднання лемків [Lemko nárečia. Fonetika a morfológia].

    3. Vasmer, M. (1958). Russisches Etymologisches Wörterbuch, Dritter Band: Sta–Ÿ [Ruský etymologický slovník, Tretí zväzok: Sta–Ÿ]. Carl Winter Universitätsverlag.

  • Lemko быти ⟨bŷty⟩ ‚byť‘

    Lemko быти ⟨bŷty⟩ ‚byť‘

    Byť či nebyť? Быти або не быти? To je otázka, a teraz môžete časovať infinitívy preslávené úvodnou vetou Hamletovho monológu v Lemko jazyku pomocou automatickej prekladateľskej služby LemkoTran, alebo si vytvoriť vlastné spony pomocou tohto praktického DIY sprievodcu.

    Preklady

    Lemko sloveso быти (vedecká transliterácia: ⟨bŷty⟩) znamená „byť“ v angličtine, być v poľštine, бути ⟨buty⟩ v štandardnej ukrajinčine a быть ⟨byt’⟩ v moskovskej ruštine.

    AngličtinaLemkoPoľštinaUkrajinčinaRuština
    byťбыти ⟨bŷty⟩byćбутибыть
    Preklady Lemko slovesa быти do angličtiny, poľštiny, ukrajinčiny a ruštiny.

    Etymológia

    Lemko infinitív быти ⟨bŷty⟩, čo znamená „byť“, pochádza z protoslovanského atematického slovesa *byti a súvisí so sanskritským भूति ⟨bhūtíṣ⟩ „blahobyt“ (Vasmer 1953, s. 159; Pokorny 1959 147), perzským بودن ⟨būdan⟩ „byť“ (Pokorny, s. 147), latinským futūrus „budúcnosť“ (Vasmer, s. 159, Pokorny, s. 149) a prostredníctvom staroanglického bēon, anglického be (Pokorny, s. 149).

    Doloženie

    Hamletova slávna úvodná veta „Byť či nebyť, to je otázka“ je spomenutá v nasledujúcich publikovaných dielach, ktoré sa objavili:

    Для дакотрых орґанізаций є то быти або не быти, значыт, без тых грошів не сут в силі нич зреализувати.“ (LEM.fm 2021)

    Transcription
    dl'a dakotrŷch organizacyj je to bŷty abo ne bŷty, značŷt, bez tŷch hrošiv ne sut v syl'i nyč zrealyzuvaty.

    Translation
    For some organizations, it's to be or not to be, meaning they will not be able to achieve anything without those funds.

    От нашых діл и нашой віры буде рішатися вопрос: ци нам лемкам быти, ци не быти?….“ (Цисляк 1964, s. 162)

    Transliterácia
    Ot našŷch dil y našoj virŷ bude rišatysia vopros: cy nam lemkam bŷty, cy ne bŷty?…
    Preklad
    Our affairs and our faith will be decide the question of whether we Lemkos are to be or not to be

    Časovanie

    Budúci čas

    Koreň: буд– ⟨bud-⟩

    Budúci čas Lemko slovesa byť, быти ⟨bŷty⟩, sa tvorí pridaním osobných koncoviek ku koreňu bud-, čo je ekvivalentné anglickému will.

    Etymológia

    Lemko bud- pochádza z protoslovanského koreňa *bǫd-. Porovnajte príponu -bund v anglickom moribund z latinského moribundus (Pokorny, s. 150, Vasmer, s. 136).

    Tabuľka časovania

    AngličtinaLemkoPoľštinaUkrajinčinaRuština
    Ja budemбуду ⟨búdu⟩bęбудубуду
    Ty budešбудеш⟨búdeš⟩będzieszбудешбудешь
    On/ona budeбуде ⟨búdet⟩będzieбудебудет
    My budemeбудеме ⟨budéme⟩będziemyбудемобудем
    Vy budeteбудете ⟨budéte⟩będziecieбудетебудете
    Oni budúбудут ⟨búdut⟩bęбудутьбудут
    Tvary časovania budúceho času Lemko slovesa быти ⟨bŷty⟩ preložené do angličtiny, poľštiny, štandardnej ukrajinčiny a ruštiny.
    Literatúra
    Fontański & Chomiak (2000, s. 106).

    Prítomný čas

    Koreň: є– ⟨je-⟩, с– ⟨s-⟩

    V Lemko jazyku sa prítomný čas slovesa byť tvorí v jednotnom čísle z koreňa є- ⟨je-⟩ a v množnom čísle z koreňa с- ⟨s-⟩.

    Etymológia

    Všetky nižšie uvedené tvary siahajú k predkovi protoslovanského koreňa *es-, ku ktorému boli pripojené osobné koncovky. Porovnajte s anglickým is, nemeckým ist, latinským est, starogréckym ἐστί ⟨estí⟩, perzským است ⟨ast⟩ a sanskritským अस्ति ⟨ásti⟩ (Pokorny, s. 340-341; Vasmer, s. 405).

    Tabuľka časovania

    AngličtinaLemkoPoľštinaUkrajinčinaRuština
    Ja somєм ⟨jem⟩jestemєесть
    Ty siєс ⟨jes⟩jesteśєесть
    On/ona jeєст ⟨jest⟩ajestєесть
    My smeсме ⟨sme⟩bjesteśmyєесть
    Vy steсте ⟨ste⟩cjesteścieєесть
    Oni súсут ⟨sut⟩єесть
    Tvary časovania prítomného času Lemko slovesa быти ⟨bŷty⟩ preložené do angličtiny, poľštiny, štandardnej ukrajinčiny a ruštiny.

    a Lemko tvar tretej osoby jednotného čísla єст ⟨jest⟩ je teraz nahrádzaný tvarom є ⟨je⟩, hoci je to stále zriedkavé (Fontański & Chomiak 2000, s. 109).

    b Fontański & Chomiak (2000, s. 109) uvádzajú Lemko tvar prvej osoby množného čísla ako (єсме)сме/зме ⟨(jesme)sme/zme⟩.

    c Fontański & Chomiak (2000, s. 109) uvádzajú Lemko tvar druhej osoby množného čísla ako (єсте)сте ⟨(jeste)ste⟩.

    Literatúra
    Fontański & Chomiak (2000, s. 106).

    Minulý čas

    Koreň: был- ⟨bŷl-⟩

    Minulý čas slovesa „byť“ sa v Lemko jazyku tvorí pridaním príslušných rodových a množných prípon ku kmeňu был- ⟨bŷl-⟩, preložiteľnému do angličtiny ako was alebo were.

    Etymológia

    Lemko был ⟨bŷl⟩ je nepochybne pokračovaním protoslovanského výsledného príčastia *bylŭ. Porovnajte so starogréckym φῦλον ⟨phylon⟩ (Vasmer, s. 159), z ktorého pochádza anglické phylum.

    Tabuľky časovania

    Mužský rod

    Použite nasledujúce pre označenie mužov alebo zmiešaných skupín mužov a žien, ako aj predmetov gramaticky mužského rodu. Mužská virilita nie je v Lemko jazyku gramatickou kategóriou, na rozdiel od poľštiny.

    AngličtinaLemkoPoľštinaUkrajinčinaRuština
    Ja som bolaя былa
    ⟨ja bŷl⟩
    byłemя бувя был
    Ty si bolaты былb
    ⟨tý bŷl⟩
    byłeśти бувты был
    On bolвін был
    ⟨vin bŷl⟩
    byłвін бувон был
    My sme boliмы былиc
    ⟨mŷ bŷly⟩
    byliśmyми булимы были
    Vy ste boliвы былиd
    ⟨vŷ bŷly⟩
    byliścieви буливы были
    Oni boliони были
    ⟨ony bŷly⟩
    byliвони булиони были
    Tvary časovania minulého času mužského rodu Lemko slovesa быти ⟨bŷty⟩ preložené do angličtiny, poľštiny, štandardnej ukrajinčiny a ruštiny.

    a Fontański & Chomiak (2000, s. 109) uvádzajú был єм ⟨bŷl em⟩ ako alternatívny tvar mužského rodu prvej osoby jednotného čísla minulého času slovesa „byť“.

    b Fontański & Chomiak (2000, s. 109) uvádzajú был єс ⟨bŷl es⟩ ako alternatívny tvar mužského rodu druhej osoby jednotného čísla minulého času slovesa „byť“.

    c Fontański & Chomiak (2000, s. 109) uvádzajú были сме ⟨bŷly sme⟩ ako alternatívny tvar prvej osoby množného čísla minulého času slovesa „byť“.

    d Fontański & Chomiak (2000, s. 109) uvádzajú были сте ⟨bŷly ste⟩ ako alternatívny tvar druhej osoby množného čísla minulého času slovesa „byť“.

    Literatúra
    Fontański & Chomiak (2000, s. 106).
    Ženský rod

    Použite nasledujúce pre označenie žien a predmetov gramaticky ženského rodu.

    AngličtinaLemkoPoľštinaUkrajinčinaRuština
    Ja som bolaя былаa
    ⟨ja bŷla⟩
    byłamя булая была
    Ty si bolaты былаb
    ⟨tý bŷla⟩
    byłaśти булаты была
    Ona bolaона была
    ⟨ona bŷla⟩
    byłaвона булаон была
    My sme boliмы былиc
    ⟨mŷ bŷly⟩
    byłyśmyми булимы были
    Vy ste boliвы былиd
    ⟨wŷ bŷly⟩
    byłyścieви буливы были
    Ony boliони были
    ⟨ony bŷly⟩
    byłyвони булиони были
    Tvary časovania minulého času ženského rodu Lemko slovesa быти ⟨bŷty⟩ preložené do angličtiny, poľštiny, štandardnej ukrajinčiny a ruštiny.

    a Fontański & Chomiak (2000, s. 109) uvádzajú была єм ⟨bŷla em⟩ a былам ⟨bŷlam⟩ ako alternatívne tvary ženského rodu prvej osoby jednotného čísla minulého času slovesa „byť“.

    b Fontański & Chomiak (2000, s. 109) uvádzajú была єс ⟨bŷla es⟩ a былас ⟨bŷlas⟩ ako alternatívne tvary ženského rodu druhej osoby jednotného čísla minulého času slovesa „byť“.

    c Fontański & Chomiak (2000, s. 109) uvádzajú были сме ⟨bŷly sme⟩ ako alternatívny tvar prvej osoby množného čísla minulého času slovesa „byť“.

    d Fontański & Chomiak (2000, s. 109) uvádzajú были сте ⟨bŷly ste⟩ ako alternatívny tvar druhej osoby množného čísla minulého času slovesa „byť“.

    Literatúra
    Fontański & Chomiak (2000, s. 106).
    Stredný rod

    Použite nasledujúce pre označenie predmetov gramaticky stredného rodu.

    AngličtinaLemkoPoľštinaUkrajinčinaRuština
    Ono boloоно было
    ⟨ono bŷlo⟩
    byłoвоно булооно было
    Oni boliони были
    ⟨ony bŷly⟩
    byłyвони булиони были
    Tvary časovania minulého času stredného rodu Lemko slovesa быти ⟨bŷty⟩ preložené do angličtiny, poľštiny, štandardnej ukrajinčiny a ruštiny.
    Literatúra
    Fontański & Chomiak (2000, s. 106).

    Referencie

    1. Fontański, H., Chomiak, M. (2000). Ґраматыка лемківского языка [Gramatika Lemko jazyka]. Śląsk.
    2. Vasmer, M. (1953). Russisches Etymologisches Wörterbuch, Erster Band: A – K [Ruský etymologický slovník, Zväzok prvý: A – K]. Carl Winter Universitätsverlag.
    3. Pokorny, J. (1959). Indogermanisches etymologisches Wörterbuch, I. Band [Indo-germánsky etymologický slovník, Zväzok prvý]. A. Francke AG Verlag.
    4. Цисляк, А. (1964). Нашы Родны Бескиды [Naše rodné Beskydy]. In: Карпаторусский Календарь Лемко-Союза На Год 1964. Типография Лемко-Союза.
    5. Lem.fm (2021). Хто робит, а хто… но власні, што? [Ten, kto robí, a ten, kto… No, čo?], www.Lem.fm.
    Domov » Blog

  • Nový experiment: Umelo vytvorené Lemko?

    Nový experiment: Umelo vytvorené Lemko?

    Tento mesiac budem vykonávať experiment, aby som zistil, či je možné stroje naučiť prekladať do Lemko lepšie ako Google Translate alebo ľudia.

    Hypotéza

    Stroj je možné nakonfigurovať na preklad z angličtiny do ohrozeného slovanského jazyka Lemko a dosiahnuť vyššie skóre kvality ako ukrajinská služba Google Translate, ale zatiaľ nie vyššie ako skóre ľudí.

    Predpovede

    • Môj systém strojového prekladu založený na pravidlách (RBMT) z angličtiny do Lemko dosiahne bilingválne hodnotenie pod štúdiom (BLEU) skóre 15 proti čistému bilingválnemu korpusu.
    • Vyššie uvedený systém dosiahne skóre BLEU, ktoré je o tretinu vyššie (napr. 20), v spojení s improvizovaným systémom strojového prekladu založeným na slovníku (DBMT) vytvoreným z párov tvrdení jednotkových testov Lemko-poľština.
    • Prekladateľská služba Google Translate z angličtiny do ukrajinčiny dosiahne skóre BLEU 10 proti vyššie uvedenému korpusu.
    • Ja, človek, dosiahnem vyššie skóre BLEU ako všetky vyššie uvedené stroje proti vyššie uvedenému korpusu.

    Experimenty sa uskutočnia v priebehu približne jedného týždňa, pre následné zverejnenie.

  • Áno, hovorím… Neuronový strojový preklad AI vo viacjazyčnom školení (2021)

    Please cite as:

    Orynycz, P., Dobry, T., Jackson, A., & Litzenberg, K. (2021). Yes I Speak… AI neural machine translation in multi-lingual training. In Proceedings of the Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC). https://www.xcdsystem.com/iitsec/proceedings/index.cfm?Year=2021&AbID=96953&CID=862

    Abstrakt

    Rýchlo zdieľateľné a spoločne použiteľné školenia medzi koaličnými partnermi sa musia jazykovo a kultúrne prispôsobiť (t. j. lokalizovať) jazykom neanglofónnych spojencov, ktorí predstavujú aktérov v prvej línii s obmedzenou alebo potenciálne žiadnou znalosťou angličtiny. Tradične bola lokalizácia časovo a pracovne náročný proces, pričom expert potreboval viac ako dva mesiace na preklad stredne veľkej knihy. Medzitým musia cvičenia reagovať na celkové časové rámce vývoja v dňoch a týždňoch, nie v mesiacoch a rokoch, aby reagovali na meniace sa reality operačného sveta. V tomto kontexte sa tradičná lokalizácia stáva hlavnou prekážkou pre úsilie koalície. V rýchlo sa vyvíjajúcich situáciách spojenci jednoducho nemôžu čakať mesiace a roky na školenia potrebné dnes večer alebo na riešenie misie budúceho týždňa v jazykoch ľahko zrozumiteľných v prvej línii – to znamená, aby sa splnil dlho očakávaný sen o lokálne prispôsobenom školení na riešenie potrieb priamo v teréne.

    Vstupuje do hry vznikajúca technológia umelej inteligencie, neuronový strojový preklad, ktorá dokáže za pár minút to, čo skúseným ľudským lingvistom trvá hodinu, čím sa stáva uskutočniteľné celokoaličné, viacjazyčné nasadenie v priebehu dní a týždňov, pričom sa zohľadňuje neustále sa zlepšujúca komplexnosť. To je možné vďaka strojovému učeniu, teda trénovaniu umelých rekurentných neurónových sietí na preklad z jedného prirodzeného jazyka do druhého.

    Vyvinuli sme motory založené na umelej inteligencii, merali sme čas ich prekladu školiacich materiálov Organizácie Severoatlantickej zmluvy (NATO) a ich presnosť sme merali pomocou metriky BLEU (bilingual understudy evaluation). Náš motor prekladal z ruštiny o 1 169,51 % rýchlejšie a o 58,37 % presnejšie ako náš profesionálny ľudský lingvista použitý ako kontrola. Náš poľský neurónový motor bol o 17,29 % presnejší a o 488,45 % rýchlejší ako ľudský. Naše prekladové motory Lemko sú prvé na svete a dosiahli slušné skóre BLEU 14,57. Medzitým sme vyššie uvedené vykonali na lacnom prenosnom počítači v prostredí s oddelenou sieťou a riadeným prístupom, odrezanom od vonkajšieho sveta.

    Úvod

    Problém

    Online prekladateľské služby fungujú, kým človek nepotrebuje prekladať tajne alebo z jazyka, ktorý nepatrí medzi top 2 % z hľadiska zdrojov. Používanie aj tých najbezpečnejších online alebo cloudových prekladateľských služieb znamená zdieľanie informácií s treťou stranou, čo porušuje väčšinu komerčných dohôd o mlčanlivosti, nehovoriac o požiadavkách obranného priemyslu. Ďalej, popredná online prekladateľská platforma funguje len pre 109 jazykov (Google, 2021), čo je menej ako 2 % zo 7 139 jazykov, ktorými sa dnes hovorí vo svete (Eberhard, Simons, & Fennig, 2021). Tvárou v tvár inherentnému riziku tretích strán u poskytovateľov cloudových služieb sa mnohí obracajú na preverených ľudských lingvistov, ktorí dokážu v najlepšom prípade preložiť jednu knihu mesačne a v najhoršom prípade predstavujú celoživotné hrozby neoprávneného zverejnenia. Aby sme poskytli viac možností viacjazyčným podnikom a organizáciám, rozhodli sme sa vyriešiť problém využitia umelej inteligencie na rýchly, presný a tajný preklad materiálov z jazykov s vysokými, strednými a nízkymi zdrojmi na lacných, stredne výkonných prenosných počítačoch s oddelenou sieťou, odpojených od internetu a vonkajšieho sveta.

    Doterajšie riešenia

    Zatiaľ čo základy strojového prekladu boli položené v Bagdade al-Kindīho pred viac ako tisícročím (DuPont, 2018; pozri tiež al-Kindī, 2002), takmer všetok veľkolepý, viditeľný pokrok sa udial v Silicon Valley za posledných päť rokov. Hlavný prelom nastal v spoločnosti Google (Lewis-Kraus, 2016) a Facebook sa teraz pripojil ku klubu neurónového strojového prekladu (Ott a kol., 2019). Vychádzali sme z práce ich motora FAIRseq, pre ktorý Sławomir Dadas sprístupnil vynikajúci poľsko-anglický model (Dadas, 2019). Nadviazali sme na prácu pána Dadasa, aby sme vytvorili hybridné neurónové/pravidlové/slovníkové motory, ktoré prekladajú z Lemko do angličtiny a naopak. Myšlienka aplikácie prenosového učenia pre spracovanie rusínskeho prirodzeného jazyka (NLP) bola prediskutovaná s našimi váženými kolegami Yvesom Scherrerom a Achimom Rabusom, ktorí ako prví publikovali výsledky v recenzovanom časopise a láskavo využili príležitosť spomenúť hybridný neurónový/pravidlový Lemko strojový prekladový motor Petra Orynycziho (Scherrer & Rabus, Neuronové morfosyntaktické značkovanie pre rusínčinu, 2019, s. 634), ktorý je v prevádzke a voľne dostupný na verejné použitie na webovej adrese www.lemkotran.com od marca 2019, pričom jeho modul na spracovanie prirodzeného jazyka s transliteráciou bol tam sprístupnený na verejné použitie v septembri 2017.

    Širší systém

    Jazyky s vysokými, strednými a nízkymi zdrojmi

    Jazykové páry sú v odbornej literatúre klasifikované ako s vysokými zdrojmi, so strednými zdrojmi a s nízkymi zdrojmi, v závislosti od množstva dostupných technológií a dátových súborov vzhľadom na ich medzinárodný význam (Cieri, Maxwell, Strassel, & Tracey, 2016, s. 4545). Páry s vysokými zdrojmi zahŕňajú češtinu-angličtinu (Kocmi, 2020, s. 171), ruštinu-angličtinu, nemčinu-angličtinu (Ng a kol., 2019, s. 314) a čínštinu-angličtinu (Kocmi & Bojar, 2019, s. 234–235). Poľština-angličtina je pár so strednými zdrojmi (Jónsson, Símonarson, Snæbjarnarson, Steingrímsson, & Loftsson, 2020, s. 2). Páry s nízkymi zdrojmi zahŕňajú gudžarátčinu-angličtinu, kazaštinu-angličtinu (Kocmi & Bojar, s. 234), inuktitut-angličtinu (Kocmi, s. 171) a Lemko-angličtinu (Scherrer & Rabus, 2019, s. 85). Keďže trénovanie jazykových modelov umelej inteligencie vyžaduje obrovské množstvo bilingválnych dát, jazyky s vyššími zdrojmi sa vo všeobecnosti tešia dostupnosti neurónových strojových prekladových motorov. Medzitým, kvôli nedostatku tréningových dát pre strojové učenie, sú neurónové motory zriedkavejšie pre jazyky s nižšími zdrojmi, ktoré sú často lepšie obsluhované predchádzajúcou generáciou motorov štatistického strojového prekladu (SMT).

    Jazyk s vysokými zdrojmi v experimente: ruština

    Ruštinou hovorí ako prvým jazykom viac ako 168 miliónov ľudí a ako ďalším jazykom ďalších 114 miliónov (Maximova, Noyanzina, Omelchenko, & Maximova, 2018, s. 2). Automatizácia jej prekladu do angličtiny bola svätým grálom povojnového úsilia v oblasti strojového prekladu. Ako jeden z úradných jazykov Organizácie Spojených národov je k dispozícii obrovské množstvo bilingválneho rusko-anglického textu pod liberálnou licenciou (Ziemski, Junczys-Dowmunt, & Pouliquen, 2016, s. 3530).

    Jazyk so strednými zdrojmi v experimente: poľština

    Poľština je západoslovanský jazyk, ktorým hovorí približne 38 miliónov ľudí v dnešnom Poľsku, pričom sa očakáva pokles tohto počtu čiastočne v dôsledku pandémie prebiehajúcej v čase publikácie (Associated Press, 2021). Ďalších 10 miliónov hovorí poľsky do určitej miery aj za hranicami krajiny (Jassem, 2003, s. 103). Ako jeden z úradných jazykov Európskej únie je k dispozícii veľké množstvo bilingválneho textu na trénovanie prekladových modelov umelej inteligencie, vrátane 22 630 dokumentov Európskeho parlamentu (Hajlaoui, Kolovratnik, Vaeyrynen, Steinberger, & Varga, 2014, s. 3165).

    Jazyk s nízkymi zdrojmi v experimente: Lemko

    Lemko je jazyk s nízkymi zdrojmi (Scherrer & Rabus, 2019, s. 85), ktorý spĺňa tradičné kritériá pre klasifikáciu ako východoslovanský. Napríklad Lemko vykazuje východoslovanskú pleofóniu, to znamená, že výsledkom praslovanských sekvencií „ToRT“ je ToRoT (Fortson IV, 2004, s. 371-372), ako v Lemko horodyty ‘oplotiť, ohradiť’ (Horoszczak, 2004, s. 45), ako aj v štandardnej ukrajinčine horodyty, rusínčine horodyty a ruštine gorodit’ (Kerča, 2007, s. 176). Medzitým porovnajte poľštinu (západoslovanský jazyk) s -ro- v grodzić, ale chorvátčinu (juhoslovanský jazyk) s -ra- v graditi, ‘stavať’. Ďalej, angličtina má -ar- v yard a garden, avestčina (staroiránsky jazyk) s -ǝrǝ- v gǝrǝδō ‘jaskyňa’, a sanskrit (staroindický jazyk) s -ṛ- v gṛhás ‘domov’ (Vasmer, s. 1443).

    Zatiaľ čo presná klasifikácia Lemko a jeho status vo vzťahu k štandardnej ukrajinčine a kodifikovanej rusínčine je predmetom kontroverzie (Rabus & Scherrer, 2017), náš Lemko-anglický motor, ktorý dosiahol tak vysoké skóre bez použitia zdrojov štandardnej ukrajinčiny alebo rusínčiny kodifikovanej na Slovensku, by mohol podporiť záver Watrala (2015), že Lemko je plnohodnotný jazyk sám o sebe, a nie dialekt iného jazyka. Povzbudení rastúcimi objektívnymi hodnotami kvality sme sa rozhodli uprednostniť poľské prenosové učenie kvôli jeho okamžitej návratnosti investícií z hľadiska presnosti prekladu Lemko, čo je naša najvyššia hodnota. Je možné, že hodnoty kvality boli zvýšené interferenciou z pozorovanej hybridnej reči, kde sú gramatické koncovky Lemko spätne prispôsobené štandardným poľským slovám (Watral, 2016, s. 242).

    Poľský štatistický úrad zaznamenal v roku 2011 6 279 osôb hovoriacich Lemko doma, čo je nárast z 5 605 v roku 2002 (Departament Wyznań Religijnych oraz Mniejszości Narodowych i Etnicznych, 2013, s. 7), pričom v čase publikácie prebiehalo nové sčítanie. Koľko z 24 539 obyvateľov Poľska, ktorí boli v roku 2011 zaznamenaní ako hovoriaci ukrajinsky doma alebo 626 hovoriacich „rusínsky“ (język ruski) s inými členmi domácnosti (Departament Wyznań Religijnych oraz Mniejszości Narodowych i Etnicznych, 2013, s. 7), by mohlo byť hovoriacich Lemko, presahuje rozsah tohto článku. Štátna štatistická služba Ukrajiny zaznamenala 672 Lemkov v rámci svojich hraníc (Deržavna služba statystyky Ukraïny, 2001). Na stupnici ohrozenia jazykov OSN od 0 do 5, kde 0 znamená vyhynutý a 5 „bezpečný“ (Ad Hoc expertná skupina UNESCO pre ohrozené jazyky, 2003, s. 7-8), by sa Lemko blížilo k 2, to znamená, vážne ohrozený: prirodzený medzigeneračný prenos jazyka čoraz viac chýba a mladší hovoriaci sú čoraz neexistujúci (Duć-Fajfer, 2016, s. 178). Existujú však aj pozitívne signály, keďže zákony, ktoré chránia a podporujú používanie menšinových jazykov vo vzdelávaní, vysielaní, vydavateľstve, cestnom značení a vede, sa čoraz viac využívajú (Duć-Fajfer, 2016, s. 178-179).

    Situácia so zdrojmi sa tiež zlepšuje. Petro Orynycz zostavil a zarovnal bilingválny Lemko-anglický korpus, ktorý obsahuje 68 599 zdrojových slov spolu s jeho prekladmi do angličtiny (jediný existujúci paralelný text, o ktorom vieme). Korpus bol zostavený pomocou rozhovorov vedených v Lemko nadáciou Johna a Helen Timo zo Spojených štátov, ktorá poverila pána Orynycziho, aby ich prepísal a preložil, a tiež mu povolila použiť túto prácu vo svojom vedeckom výskume a vývoji. Zhromažďuje tiež monolingválny Lemko korpus s viac ako miliónom slov. Zatiaľ čo komplexné sociolingvistické vzťahy medzi Lemko, rusínskymi, štandardnými ukrajinskými a slovenskými jazykovými komunitami presahujú rozsah tohto článku, práve poľské zdroje (konkrétne poľské neurónové modely) boli kľúčové pre hybridné Lemko motory pána Orynycziho.

    Hypotézy a predpovede

    Rýchlosť prekladu

    Hypotéza: strojový preklad s umelou inteligenciou s oddelenou sieťou je teraz rovnako rýchly ako ľudia

    Predpokladali sme, že motory neurónového strojového prekladu bežiace offline na stredne výkonných prenosných počítačoch sú teraz porovnateľné rýchlosťou s ľudskými prekladateľmi. To bolo založené na pozorovaniach počas vývoja motora, že neurónový strojový preklad trval od niekoľkých sekúnd do menej ako minúty na preklad vety na stredne výkonnom prenosnom počítači, čo je porovnateľné s ľudskými rýchlosťami, ktoré pozoroval Petro Orynycz vo svojej skúsenosti v lokalizačnom priemysle.

    Predpoveď: motory strojového prekladu spracujú viac slov za hodinu ako ľudskí prekladatelia

    Na základe našej hypotézy, že motory neurónového strojového prekladu s oddelenou sieťou bežiace offline na stredne výkonných prenosných počítačoch budú rovnako rýchle ako ľudia, sme predpovedali, že ich rýchlosť prekoná rýchlosť ľudských lingvistov a že preložia viac slov za sekundu ako náš ľudský kontrolný subjekt.

    Presnosť prekladu

    Hypotéza: motory strojového prekladu s umelou inteligenciou sú teraz takmer rovnako presné ako ľudskí prekladatelia

    To bolo založené na profesionálnom pozorovaní Petra Orynycziho ako špecialistu na kontrolu kvality prekladu, že komerčné cloudové služby neurónového strojového prekladu sa nielen dramaticky zlepšili, ale produkovali výsledky často nerozoznateľné od výsledkov ľudských lingvistov.

    Predpoveď: motory strojového prekladu s umelou inteligenciou dosiahnu aspoň 75 % skóre kvality BLEU profesionálnych ľudských prekladateľov

    Zatiaľ čo sme vedeli, že motory neurónového strojového prekladu môžu byť lepšie ako bilingválni amatéri, ktorí sa prvýkrát pokúšajú prekladať, neverili sme, že naše motory prekonajú skúsených, profesionálnych lingvistov v priamej súťaži. Našťastie, naše pochybnosti mohli byť podrobené skúške. Algoritmus BLEU (bilingual evaluation understudy) je najdominantnejšou metrikou pre výskum strojového prekladu, pričom je jazykovo nezávislý, lacný a ľahko vypočítateľný, ako aj primerane korelovaný s ľudskými úsudkami (Post, 2018). Predpovedali sme, že naše neurónové motory dosiahnu 75 % kvalitatívnych bodov, ktoré získal ľudský lingvista. Napríklad, ak ľudský lingvista získal 40 bodov, neurónový strojový preklad by získal 30 bodov. Medzitým sme predpovedali, že náš hybridný Lemko-anglický motor dosiahne kumulatívne skóre BLEU 15.

    Bezpečnosť prekladu

    Hypotéza: strojový preklad s umelou inteligenciou možno vykonávať offline na prenosných počítačoch vo vysoko bezpečných terénnych podmienkach

    Predpokladali sme, že neurónový strojový preklad možno vykonávať offline na prenosnom zariadení s oddelenou sieťou, úplne odrezanom od vonkajšieho sveta. To bolo založené na pozorovaní, že všetky komponenty nášho riešenia nevykonávali žiadne volania na internet po nainštalovaní závislostí. Implicitným predpokladom je, že prekladové systémy s oddelenou sieťou s povoleným režimom Lietadlo nemožno vzdialene monitorovať ani hacknúť. Ďalším predpokladom je, že operátori boli nielen riadne preverení, ale aj prijali vhodné opatrenia proti externým a interným hrozbám. Ďalším implicitným predpokladom je, že je jednoduchšie chrániť len jednu mobilnú pracovnú stanicu po dobu niekoľkých hodín, než zabrániť ľudským lingvistom, ktorí zarábajú v priemere 25,01 USD za hodinu (Bureau of Labor Statistics, United States Department of Labor, 2021), v neoprávnenom zverejňovaní informácií počas celého života, najmä vzhľadom na správy o zatknutí lingvistov pre podozrenie z úniku tajomstiev (Department of Justice Office of Public Affairs, 2009, 2018, 2020).

    Predpoveď: strojový preklad s umelou inteligenciou bude úspešný na prenosnom počítači Lenovo Legion Y730-17ICH s oddelenou sieťou, bežiacom offline v režime Lietadlo

    Predpovedali sme, že náš prekladový systém nebude zlyhávať a dokončí svoje úlohy, keď bude fyzicky oddelený a odpojený od všetkých sietí alebo zariadení aktiváciou funkcie Režim Lietadlo systému Windows 10 Pro na prenosnom počítači Lenovo Legion Y730-17ICH (Typ 81HG).

    Hybridný motor Lemko-anglický založený na pravidlách/slovníku a neurónovej sieti

    Hypotéza: hybridné motory založené na slovníku/pravidlách zlepšujú presnosť strojového prekladu

    Predpokladali sme, že náš poľsko-Lemko motor strojového prekladu založený na pravidlách (RBMT), poľsko-Lemko motor strojového prekladu založený na slovníku (DBMT), Lemko-poľský motor DBMT spustený reverzne a neurónový poľsko-anglický motor by mohli byť synergicky spojené do hybridného motora, ktorý dosahuje vyššie hodnoty kvality s každou ďalšou časťou. Táto hypotéza bola založená na pozorovaniach autora, ktorý pracoval ako profesionálny Lemko-anglický prekladateľ, že zhody medzi Lemko a poľštinou boli dostatočne časté na to, aby hybridný motor bol životaschopným návrhom.

    Predikcia: každý podmotor pridaný do nášho hybridného Lemko-anglického motora zvýši BLEU o 5 bodov

    Predpokladali sme, že pre každý Lemko-poľský podmotor založený na pravidlách alebo slovníku, ktorý sme pridali do nášho hybridného Lemko-anglického motora, sa celkové skóre presnosti BLEU zvýši o 5 bodov.

    Úvod do metód a zdôvodnenie

    Postavili sme človeka proti stroju tým, že sme obom dali stredne výkonný, vzduchom oddelený laptop s naším vlastným programom počítačom podporovaného prekladu (podrobne opísaným nižšie), zatiaľ čo boli offline v režime Lietadlo systému Windows. Zaznamenali sme rýchlosť a presnosť prekladu z ruštiny do angličtiny (jazykový pár s vysokými zdrojmi), z poľštiny do angličtiny (pár so strednými zdrojmi) a z Lemko do angličtiny (pár s nízkymi zdrojmi). Na vyjadrenie rýchlosti sme použili metriku slov za hodinu, pretože je to hlavná metrika pre manažérov lokalizačných projektov, ako aj používaná vo vedeckej literatúre (Macken, Prou, & Tezcan, 2020, s. 4). Na meranie presnosti sme použili metriku BLEU, pretože je najrozšírenejšia v oblasti výskumu a vývoja (Post, 2018).

    Hlavné výsledky v skratke

    Nielenže sme dokázali aplikovať prelomovú technológiu neurónového strojového prekladu na použitie umelej inteligencie na vzduchom oddelenom, offline laptope v režime Lietadlo na preklad jazyka s vysokými zdrojmi (ruština) viac ako 10-krát rýchlejšie ako náš ľudský lingvista, ale kvalita nášho stroja bola o viac ako 58 percent „lepšia ako ľudská“. Okrem toho sme prvý tím na svete, ktorý publikoval výsledky pre Lemko prekladové motory v vedeckom časopise.

    Materiály a metódy

    Úvod

    Na otestovanie našich predpovedí sme zostrojili niekoľko motorov umelej inteligencie a hybridných prekladových motorov, vypočítali ich rýchlosť a presnosť na vzduchom oddelenom laptope v režime Lietadlo systému Windows a to isté sme urobili s profesionálnym lingvistom, aby sme náš experiment kontrolovali.

    Nastavenie laboratória

    Hardvér

    Použili sme laptop Lenovo Legion Y730-17ICH (typ 81HG) s operačným systémom Windows 10 Pro (64-bit). Model bol ukončený a v čase publikácie sa predáva za približne 850 USD, z druhej ruky.

    Operačný systém

    Virtualizovaný operačný systém použitý pre experiment bol Linux Subsystem pre Windows, a presnejšie, Ubuntu 18.04 LTS nainštalovaný prostredníctvom platformy digitálnej distribúcie Microsoft Store.

    Závislosti

    Python 3.8 bol nainštalovaný pomocou príkazu sudo apt install python3.8.

    Príkaz sudo python3.8 -m pip install –upgrade bol použitý na inštaláciu hlavných závislostí, vrátane bleu, fastBPE, hydra-core, python-dev-tools, PyYAML, omegaconf, pip, pytz, nltk, setuptools, sacremoses, subword-nmt, torch, and torchvision.

    Sady nástrojov

    Nainštalovali sme Facebook AI Research Sequence-to-Sequence Toolkit spustením nasledujúcich príkazov:

    sudo git clone https://github.com/pytorch/fairseq
    cd fairseq
    sudo python3.8 -m pip install --upgrade --ignore-installed PyYAML --editable ./

    Dokumentácia a technická podpora sú k dispozícii na https://github.com/pytorch/fairseq

    Modely neurónového strojového prekladu

    Pre naše neurónové poľsko-anglické a hybridné Lemko-anglické motory sme použili konvolučný model Sławomira Dadasa pre poľsko-anglický jazyk, dostupný a zdokumentovaný v jeho úložisku Polish Natural Language Processing (NLP) Resources (Dadas, 2019).

    Model: https://github.com/sdadas/polish-nlp-resources/releases/download/nmt-models-conv/polish-english-conv.zip

    Dokumentácia: https://github.com/sdadas/polish-nlp-resources#machine-translation-models

    Pre náš rusko-anglický motor sme využili predtrénovaný model transformátora Facebook AI Research Sequence-to-Sequence (FAIRseq) z ruštiny do angličtiny bez jemného doladenia, ktorý bol predložený na Štvrtú konferenciu o strojovom preklade (WMT19) v roku 2019.

    Model: https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.ffn8192.tar.gz
    Dokumentácia: https://github.com/pytorch/fairseq/tree/master/examples/wmt19

    Elektronické slovníky

    Náš profesionálny lingvista mal povolený offline prístup k elektronickým verziám Nového poľsko-anglického slovníka Kościuszko Foundation (12,99 USD), ako aj k Oxfordskému rusko-anglickému slovníku (19,99 USD). Oba boli zakúpené prostredníctvom Microsoft Store. Jaroslava Horoszczaka Lemko-poľský a poľsko-Lemko slovník (2004) bol tiež k dispozícii nášmu lingvistovi na offline použitie.

    Kontrola experimentu

    Experiment bol kontrolovaný tak, že profesionálny ľudský lingvista sedel pri vzduchom oddelenom laptope v režime Lietadlo, pričom na stroji boli k dispozícii spomínané elektronické slovníky. Lingvista stlačil kláves Enter, vtedy sa spustil časovač a zobrazila sa zdrojová veta na preklad. Lingvista mal povolené písať svoj preklad v programe Microsoft Word (aby využil jeho funkciu kontroly pravopisu a iné pomôcky na spracovanie textu) a potom ho vložiť do nášho vlastného programu počítačom podporovaného prekladu. Po opätovnom stlačení klávesu Enter bol ľudský preklad odoslaný a časovač sa zastavil. Rýchlosť ľudského lingvistu v slovách za hodinu a presnosť v skóre BLEU boli vypočítané pre každú preloženú vetu.

    Petro Orynycz, ktorý má dve desaťročia skúseností ako rusko-poľský lingvista, poľský univerzitný titul z ruštiny a viac ako 5 rokov skúseností ako profesionálny Lemko-anglický prekladateľ, slúžil ako kontrolný subjekt. Vykonával spätné preklady ruských a poľských materiálov uvedených nižšie, ako aj anglické preklady z Lemko.

    Experimentálny materiál: referenčné preklady

    Rusko-anglický a poľsko-anglický text pre experiment bol získaný z vzdelávacích materiálov zdieľaných s verejnosťou a preložených z angličtiny do ruštiny a poľštiny publikáciou NATO Review Organizácie Severoatlantickej zmluvy (NATO). Citujem: „Reprodukcia častí, úryvkov alebo článkov NATO Review je povolená na nekomerčné účely, za nasledujúcej podmienky: musí byť uvedený zdroj, NATO Review.“ Ako je štandardná prax (Post, 2018), korpusové údaje boli vyčistené a normalizované zmenou textu na malé písmená a tokenizáciou. Dbalo sa na to, aby bol zdrojový text a cieľové preklady zarovnané na úrovni viet.

    Pre tento experiment sme použili prednášku Dr. Jamieho Shea, vtedajšieho zástupcu generálneho tajomníka NATO pre vznikajúce bezpečnostné výzvy. Jej názov je Čo sa dnes môžeme naučiť od „Troch múdrych mužov“? Anglický originálny text prednášky Dr. Shea a jej preklady do ruštiny a poľštiny, ktoré si objednalo NATO, boli získané z nasledujúcich jednotných lokátorov zdrojov:

    Anglický originál: https://www.nato.int/docu/review/articles/2016/12/05/what-can-we-learn-today-from-the-three-wise-men/index.html

    Ruský preklad: https://www.nato.int/docu/review/ru/articles/2016/12/05/chemu-my-moyoem-nauchit-sya-segodnya-u-treh-mudretsov/index.html

    Poľský preklad: https://www.nato.int/docu/review/pl/articles/2016/12/05/czego-mozemy-nauczyc-sie-dzisiaj-od-trzech-medrcow/index.html

    Materiál Lemko-angličtina pre experiment zahŕňal osobné rozhovory zaznamenané nadáciou John & Helen Timo zo Spojených štátov, ktorá si najala Petra Orynycziho na prepis rozhovorov a ich preklad do angličtiny. Nadácia neskôr láskavo darovala výsledné dvojjazyčné korpusy na vedecký výskum a vývoj. Na ochranu súkromia osôb, o ktorých sa hovorilo v rozhovoroch, a z úcty k Všeobecnému nariadeniu o ochrane údajov Európskej únie (GDPR), materiály neboli sprístupnené verejnosti. Pred zdieľaním vzoriek sa dbá na redigovanie akýchkoľvek osobne identifikovateľných informácií (PII) a osobných zdravotných informácií (PHI).

    Metóda hodnotenia presnosti prekladu: BLEU

    Metrika BLEU (bilingual understudy evaluation) bola použitá na meranie podobnosti s referenčným prekladom, a teda, akokoľvek nedokonale, presnosti. Hoci skóre BLEU nie je dokonalou mierou presnosti alebo kvality, je to najpoužívanejšia metrika v priemysle (Post, 2018). Modul Python bol získaný z balíka Python bleu, zdokumentovaného na nasledujúcom jednotnom lokátore zdrojov: https://pypi.org/project/bleu/

    Uistili sme sa, že keď boli dané referenčné reťazce viet “it is a white cat .” a “wow , this dog is huge .” spolu s kandidátskymi hypotézami “it is a white kitten .” a “wowww , the dog is huge !”, náš systém vypočítal kumulatívne skóre BLEU 34,99, v súlade s dokumentáciou pre balík Python bleu.

    Metóda normalizácie a čistenia textu

    Všetok text bol prevedený na malé písmená a pred a za všetky interpunkčné znamienka bola pridaná medzera, aby systém nepredpokladal, napríklad, že „Mačka“ a „mačka.“ sú rôzne slová. Takže „Je to biela mačka.“ by sa normalizovalo na „je to biela mačka .“ Viacnásobné medzery a iné sekvencie bielych znakov boli nahradené jednou medzerou pomocou metód Python split() a join().

    Metóda počítania slov

    Počet slov na vetu bol určený rozdelením normalizovaného textového reťazca na pole pomocou medzery ako oddeľovača a následným spočítaním položiek v tomto poli.

    Metóda merania rýchlosti prekladu

    V momente, keď ľudský prekladateľ stlačil kláves Enter na začatie prekladu vety, zavolali sme metódu Python time.time() na získanie počtu sekúnd od polnoci koordinovaného univerzálneho času (UTC) 1. januára 1970 ako čísla s pohyblivou desatinnou čiarkou, bežne označovaného ako Unixový čas, a toto číslo sme použili ako čas začiatku pre človeka. Získali sme aj Unixový čas, keď naše motory strojového prekladu prevzali vetu na preklad.

    Moment, keď ľudský lingvista stlačil kláves Enter na odoslanie svojho prekladu vety alebo keď stroj vrátil svoj preklad vety, bol použitý ako čas ukončenia. Odčítaním času začiatku od času ukončenia sme získali celkový počet sekúnd, ktoré trval preklad vety.

    Slová za hodinu sme vypočítali vydelením rozdielu medzi Unixovým časom ukončenia a začiatku počtom slov, ako je vypočítané vyššie, a vynásobením tohto podielu číslom 3600 (čo je 60 60, teda počet sekúnd v hodine):

    Rýchlosť = (Čas_ukončenia_prekladu − Čas_začiatku_prekladu) / Celkový_počet_preložených_slov × 3600

    Metóda fyzickej izolácie a vzduchového oddelenia zariadenia

    Zariadenie použité v experimente bolo odrezané od vonkajšieho sveta nielen prostredníctvom jeho fyzickej izolácie, ale aj použitím funkcie Režim Lietadlo v systéme Microsoft Windows 10 Pro, ktorá podľa jeho dokumentácie vypína všetky bezdrôtové komunikácie na stroji, vrátane bezdrôtovej siete IEEE 802.11b Direct Sequence, mobilnej siete, Bluetooth, Global Positioning System a Near Field Communication.

    Výsledky

    Rýchlosť prekladu: čím viac zdrojov má jazykový pár, tým rýchlejší je motor

    Stroj prekonal človeka v rýchlosti prekladu pre jazykový pár s vysokými zdrojmi (rusko-anglický) a pár so strednými zdrojmi (poľsko-anglický), v súlade s našou hypotézou, že neurónový strojový preklad je rýchlejší ako ľudia, a predpoveďou, že naše neurónové motory preložia viac slov za hodinu. Pri preklade z ruštiny náš motor dosiahol priemerne viac ako 6 456 slov za hodinu, čo bolo o 1 170 % rýchlejšie ako náš ľudský lingvista. Pri preklade z poľštiny bol náš neurónový motor o 488 % rýchlejší ako náš ľudský prekladateľ, s priemerom 3 768 slov za hodinu. Pre jazykový pár s nízkymi zdrojmi (Lemko-anglický) náš hybridný neurónový a slovníkový/pravidlový motor dosiahol 707 slov za hodinu, čo sa takmer vyrovnalo nášmu ľudskému lingvistovi, ktorý bol o 13 % rýchlejší s 798 slovami za hodinu. Odstránenie váhy slovníkovej zložky hybridného motora takmer štvornásobne zvýšilo rýchlosť na 3 137 slov za hodinu, čo je o 293 % rýchlejšie ako človek, za cenu 13 % poklesu presnosti.

    Human versus Machine Translation Speed, Words per Hour 0 1000 2000 3000 4000 5000 6000 7000 Russian-English (High-Resource Pair) Polish-English (Medium-Resource Pair) Lemko-English (Low-Resource Pair) 6456 509 3768 640 3137 707 752 798 Romanization + Hybrid Dictionary/Rule-Based Lemko-Polish MT + Polish-English Neural Translation Romanization + Dictionary-Based Lemko-Polish MT + Polish-English Neural Translation Romanization + Rule-Based Lemko-Polish MT + Polish-English Neural Translation Artificial Intelligence Neural Machine Translation Alone Professional human translation
    Obrázok 1. Rýchlosť prekladu profesionálneho človeka verzus stroja (slová/hodina) na vzduchom oddelenom stredne výkonnom laptope (režim lietadlo): rusko-anglický (vysoké zdroje) vs poľsko-anglický (stredné zdroje) vs Lemko-anglický (nízke zdroje).
    Údaje k obrázku 1: rýchlosť prekladu (slová za hodinu)
    Jazykový pár Metóda Slová/hodina
    Rusko–angličtinaProfesionálny človek509
    Rusko–angličtinaLen NMT6456
    Poľsko–angličtinaProfesionálny človek640
    Poľsko–angličtinaLen NMT3768
    Lemko–angličtinaProfesionálny človek798
    Lemko–angličtinaRomanizácia + hybridný slovníkový/pravidlový Lemko→poľský MT + poľsko→anglický NMT707
    Lemko–angličtinaRomanizácia + slovníkový Lemko→poľský MT + poľsko→anglický NMT752
    Lemko–angličtinaRomanizácia + pravidlový Lemko→poľský MT + poľsko→anglický NMT3137

    Presnosť prekladu: čím viac zdrojov má jazykový pár, tým presnejší je motor

    Presnosť prekladu našich motorov umelej inteligencie prekonala presnosť profesionálnych lingvistov. To presiahlo našu hypotézu, že neurónový strojový preklad v režime offline bol teraz len o niečo menej presný ako ľudskí prekladatelia. Náš rusko-anglický motor umelej inteligencie dosiahol 158 % presnosti nášho ľudského prekladateľa, čím prekročil nami predpokladaných 75 %. Náš poľsko-anglický neurónový motor dosiahol 117 % presnosti nášho ľudského lingvistu, čím prekročil naše očakávania 75 %. Náš hybridný Lemko-anglický motor dosiahol skóre BLEU 14,57 (51 % oproti nášmu profesionálnemu prekladateľovi), v súlade s našou predpoveďou 15, po zaokrúhlení nahor. Vynechanie nášho podmotora založeného na pravidlách viedlo k 2 % nárastu presnosti a 6 % nárastu rýchlosti. Vynechanie podmotora založeného na slovníku viedlo k 13 % poklesu presnosti, ale k 344 % nárastu rýchlosti. Zhrnutie: naše motory umelej inteligencie pre jazyky so strednými až vysokými zdrojmi boli výrazne presnejšie ako náš ľudský lingvista, zatiaľ čo naše hybridné motory pre jazyky s nízkymi zdrojmi boli približne o polovicu presnejšie ako náš ľudský lingvista.

    Human versus Machine Translation Accuracy, BLEU Score 0 5 10 15 20 25 30 35 40 45 Russian-English (High-Resource Pair) Polish-English (Medium-Resource Pair) Lemko-English (Low-Resource Pair) 39.37 24.86 35.81 30.53 14.57 14.8 12.64 28.66 Romanization + Hybrid Dictionary/Rule-Based Lemko-Polish MT + Polish-English Neural Translation Romanization + Dictionary-Based Lemko-Polish MT + Polish-English Neural Translation Romanization + Rule-Based Lemko-Polish MT + Polish-English Neural Translation Artificial Intelligence Neural Machine Translation Alone Professional Human Translation
    Obrázok 2. Profesionálny ľudský verzus strojový BLEU skóre kvality prekladu na vzduchom oddelenom stredne výkonnom laptope v režime Lietadlo, rusko-anglický (pár s vysokými zdrojmi) verzus poľsko-anglický (pár so strednými zdrojmi) verzus Lemko-anglický (pár s nízkymi zdrojmi).
    Údaje k obrázku 2: skóre BLEU
    Jazykový pár Metóda BLEU
    Rusko–angličtinaLen neurónový strojový preklad umelej inteligencie39.37
    Rusko–angličtinaProfesionálny ľudský preklad24.86
    Poľsko–angličtinaLen neurónový strojový preklad umelej inteligencie35.81
    Poľsko–angličtinaProfesionálny ľudský preklad30.53
    Lemko–angličtinaRomanizácia + hybridný slovníkový/pravidlový Lemko→poľský MT + poľsko→anglický neurónový preklad14.57
    Lemko–angličtinaRomanizácia + slovníkový Lemko→poľský MT + poľsko→anglický neurónový preklad14.8
    Lemko–angličtinaRomanizácia + pravidlový Lemko→poľský MT + poľsko→anglický neurónový preklad12.64
    Lemko–angličtinaProfesionálny ľudský preklad28.66

    Bezpečnosť prekladu

    V súlade s našou hypotézou, že riešenie neurónového strojového prekladu by mohlo byť navrhnuté tak, aby fungovalo na vzduchom oddelenom laptope, náš experiment v tomto smere uspel. V súlade s našou predpoveďou náš experiment fungoval s povoleným režimom Lietadlo systému Windows a žiadne chyby neboli spôsobené prevádzkou v odpojení od vonkajšieho sveta.

    Strojový preklad založený na pravidlách medzi Lemko a poľštinou

    Naša hypotéza, že príbuznosť medzi Lemko a poľštinou je dostatočne silná na to, aby bolo Lemko preložiteľné do poľštiny pomocou substitúcie založenej na pravidlách a slovníku, sa potvrdila pôsobivým výkonom nášho hybridného Lemko-anglického neurónového/pravidlového motora. Naša hypotéza, že kombinácia podmotora založeného na pravidlách s podmotorom založeným na slovníku povedie k presnejšiemu hybridnému motoru, nie je v súčasnosti našimi údajmi podporená. Pridanie modulu založeného na slovníku k modulu založenému na pravidlách zvýšilo BLEU motora o 2,16 bodu, čo je menej ako naša predpoveď 5.

    Diskusia

    Nová éra

    Dokázali sme, že nielenže je možné poveriť umelú inteligenciu prekladom z jazykov s vysokými, strednými a nízkymi zdrojmi v prostredí s kontrolovaným prístupom, ale neurónový strojový preklad dokáže túto prácu vykonávať rýchlejšie, bezpečnejšie a v mnohých prípadoch aj lepšie. Naše výsledky nielenže podporili naše hypotézy, ale výkon našich neurónových motorov prekonal naše predpovede. Nová éra takmer reálneho času strojového prekladu, ktorý funguje nezávisle alebo v spolupráci s ľuďmi, je tu.

    Rýchlosť

    Náš systém prekladal z ruštiny rýchlosťou 6 456 slov za hodinu. Aby sme to uviedli do kontextu, konzultovali sme s expertom Marcom Hackelom, lingvistom z obranného priemyslu vo Washingtone, D.C. a rusko-anglickým prekladateľom s desaťročiami skúseností, ktorý nám povedal, že „orientačné pravidlo je, že veľmi zdatný prekladateľ by mal byť schopný preložiť aspoň 8 strán (t. j. 8 strán po 500 slov, spolu 4 000 slov) počas 8-hodinového pracovného dňa, za predpokladu, že neexistujú žiadne prekážky ako akronymy a podobné veci. Priemer pre mnohých je v skutočnosti 250 slov za hodinu, nie 500.“ Takže neurónové systémy dokážu za menej ako hodinu to, čo ľuďom trvá dni.

    Presnosť

    Naše systémy umelej inteligencie dosiahli vyššie skóre BLEU ako náš profesionálny ľudský lingvista. Podľa tejto metriky sú naše stroje „lepšie“ v preklade z ruštiny a poľštiny ako ľudia.1 Keďže implikácia, že strojový preklad s umelou inteligenciou môže byť o viac ako 50 % presnejší ako skúsení lingvisti, je revolučná, tento experiment je potrebné zopakovať na ešte väčšom počte ľudských lingvistov a korpusov, aby sa vylúčili náhody. Použili sme výnimočne čisté, náročné texty s kvetnatým jazykom, na ktorých sa prekladové systémy tradične „zadrhávajú“ a v ktorých ľudia vynikajú. Hoci sme sa snažili o rovnaké podmienky, očakávali sme, že akákoľvek výhoda bude na strane človeka. Pre prístup k našim surovým dátam a výsledkom kontaktujte Petra Orynycziho na vyššie uvedenej adrese.

    Ďalšie kroky

    Použili sme staršie, zastarané vybavenie. Novšie vybavenie s rýchlejšími grafickými procesormi novej generácie by mohlo viesť k dramatickému zlepšeniu rýchlosti prekladu. Naša kódová základňa by mala byť optimalizovaná tak, aby maximalizovala využitie existujúcich zdrojov, ako sú grafické procesory (GPU). Plánujeme premeniť náš modul strojového prekladu založený na slovníkoch na testovaciu sadu pre použitie v testom riadenom vývoji (TDD) nášho modulu strojového prekladu založeného na pravidlách (RBMT), ktorý by sa mohol použiť na vývoj paralelných textov pre tréning čisto neurónových Lemko-anglických a anglicko-Lemko neurónových systémov strojového prekladu s umelou inteligenciou. Je potrebný ďalší výskum na identifikáciu bodov klesajúcich výnosov. Petro Orynycz plánuje aplikovať svoje hybridné neurónové a pravidlami riadené systémy na vývoj prekladových systémov pre rusínske a ukrajinské dialekty pôvodné pre dnešné Slovensko a Ukrajinu.

    Na záver

    Sme na úsvite novej transformačnej éry: dokázali sme, že umelá inteligencia dokáže vykonávať duševnú prácu rovnako dobre ako ľudia, alebo v čoraz širšom okruhu prípadov o viac ako 50 % lepšie, a to za zlomok času a s takmer žiadnym bezpečnostným rizikom. Niekoľko stoviek dolárov v hodnote vybavenia, ktoré sa zmestí do batohu, je všetko, čo človek potrebuje, aby mal vždy lepšieho ako ľudského, kremíkového terénneho lingvistu, ktorý nikdy neprezradí tajomstvá ani sa neunaví. Džin je von z fľaše a môže splniť naše želanie revitalizácie ohrozených jazykov, ak nie sen o vzkriesení vyhynutých. Udalosť masového vymierania jazykov, v ktorej sa nachádzame, sa môže zastaviť a dokonca zvrátiť. Mali by sme si dávať pozor na to, čo si želáme – svety izolované po eóny ich šifrovaním v drahých na preklad jazykoch sa chystajú zraziť. Zmena k lepšiemu, dúfame. Proščaj, jazyková bariéra. Vitaj, nový svet.

    Poznámky pod čiarou

    ^ 1 Historicky niektoré komunity odmietajú používanie BLEU na porovnávanie ľudského a strojového prekladu, no žiadny iný systém nie je tak široko akceptovaný alebo dostupný so širokou, recenzovanou validáciou v praxi. V skutočnosti vynálezcovia skóre BLEU Papineni, Roukos, Ward a Zhu predznamenali tento bod napätia v práci sponzorovanej Ministerstvom obrany Spojených štátov (financovanej Agentúrou pre pokročilé obranné výskumné projekty [DARPA] a monitorovanej Veliteľstvom vesmírnych a námorných bojových systémov [SPAWAR]) ako súčasť ich prelomovej publikácie, píšuc: „Ďalej, [metrika] musí rozlišovať medzi dvoma ľudskými prekladmi rôznej kvality. Táto posledná požiadavka zabezpečuje nepretržitú platnosť metriky, keď sa MT [strojový preklad] približuje kvalite ľudského prekladu.“ Porušiac tabu hneď na začiatku, potom pokračovali vo výpočte skóre BLEU pre „Human-1“, ktorý nebol rodeným hovorcom čínštiny ani angličtiny, a „Human-2“, rodeného hovorcu angličtiny, a zaznamenali, ako sa ich skóre BLEU úzko zhodovalo s tými, ktoré udelili ľudskí posudzovatelia (Papineni, Roukos, Ward, & Zhu, 2002).

    Poďakovanie

    Radi by sme poďakovali nášmu poradcovi, Timovi Quiramovi, zástupcovi náčelníka divízie výcviku veliteľstva pripravenosti pobrežnej stráže Spojených štátov, za jeho povzbudenie pokračovať, predstavenstvu Antech Systems, Inc. a tímu ePerformance Naval Air Warfare Center Aircraft Division Webster Outlying Field (NAWCAD WOLF) za vytvorenie prostredia, kde môžeme sledovať naše vášne, nášmu výkonnému viceprezidentovi divízie Tomovi Dobrymu za jeho neoceniteľné vedenie, zdravý úsudok a vizionárske líderstvo, ako aj nášmu vedúcemu tímu Willovi Duffovi za to, že nás prinútil tvrdo pracovať, podporoval ducha kamarátstva a morálnu podporu. Petro Orynycz by rád poďakoval svojim projektovým manažérom v oblasti umelej inteligencie Raffaelemu Pascalemu a Michalovi Brnušákovi z poskytovateľa jazykových služieb Venga Global Inc. zo Silicon Valley za ich profesionalitu, skutočnú starostlivosť o tím a neochvejnú oddanosť správnemu vykonaniu práce. Pán Orynycz by tiež rád poďakoval svojim kolegom inžinierom, kolegom a starým priateľom Michaelovi Lawrenceovi Cramerovi z BCT LLC a Michaelovi Decerbovi z Raytheon BBN Technologies za to, že verili od začiatku. Tiež by rád poďakoval svojmu priateľovi a kolegovi počítačovému lingvistovi Jounovi Pyysalovi, Ph.D. z Helsinskej univerzity za splnenie snov. Nakoniec by rád poďakoval Marii Silvestri z Nadácie Johna a Helen Timo za jej dar na vedecký výskum a vývoj Lemko rozhovorov, ktoré viedla, a prekladov, na ktoré si ho najala, ako aj svojej drahej priateľke Ołene Duć z Ruska Bursa za jej neoceniteľné preklady a prepisy rozhovorov.

    Referencie

    al-Kindī, Y. i. (2002). al-Kindi’s Edited Treatise. In M. I. AL-Suwaiyel, I. A. Kadi, & M. al-Bawab (eds.), al-Kindi’s Treatise on Cryptanalysis (vol. 1) (S. M. al-Asaad, Trans., vol. 1, pp. 117-204). Damask, Sýria: KFCRIS & KACST. (Pôvodné dielo publikované približne 850).

    Associated Press. (2021, 26. januára). Poland’s population rapidly shrinking under pandemic. Získané 19. júna 2021 z AP NEWS: https://apnews.com/article/pandemics-demographics-coronavirus-pandemic-birth-rates-covid-19-pandemic-5895d554be280b0ade9068c75872976e

    Bureau of Labor Statistics, Ministerstvo práce Spojených štátov. (2021). Príručka pracovných vyhliadok, tlmočníci a prekladatelia. Washington, DC. Získané 1. júna 2021 z https://www.bls.gov/ooh/media-and-communication/interpreters-and-translators.htm

    Cieri, C., Maxwell, M., Strassel, S., & Tracey, J. (2016). Selection Criteria for Low Resource Language Programs. Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16) (pp. 4543–4549). Portorož, Slovinsko: European Language Resources Association (ELRA). Získané 27. júna 2021 z https://www.aclweb.org/anthology/L16-1720

    Dadas, S. (2019). A repository of Polish NLP resources. Získané 26. mája 2021 z https://github.com/sdadas/polish-nlp-resources/

    Departament Wyznań Religijnych oraz Mniejszości Narodowych i Etnicznych. (2013). IV Raport dotyczący sytuacji mniejszości narodowych i etnicznych oraz języka regionalnego w Rzeczypospolitej Polskiej – 2013. Varšava, Poľsko: Ministerstwo Spraw Wewnętrznych i Administracji. Získané 13. júna 2021 z http://mniejszosci.narodowe.mswia.gov.pl/download/86/14637/TekstIVRaportu.pdf

    Department of Justice Office of Public Affairs. (2009, 17. decembra). Former FBI Contract Linguist Pleads Guilty to Leaking Classified Information to Blogger. Získané 9. júna 2021 z United States Department of Justice: https://www.justice.gov/opa/pr/former-fbi-contract-linguist-pleads-guilty-leaking-classified-information-blogger

    Department of Justice Office of Public Affairs. (2018, 23. augusta). Federal Government Contractor Sentenced for Removing and Transmitting Classified Materials to a News Outlet. Získané 9. júna 2021 z United States Department of Justice: https://www.justice.gov/opa/pr/federal-government-contractor-sentenced-removing-and-transmitting-classified-materials-news

    Department of Justice Office of Public Affairs. (2020, 17. augusta). Former CIA Officer Arrested and Charged with Espionage. Získané 9. júna 2021 z United States Department of Justice: https://www.justice.gov/opa/pr/former-cia-officer-arrested-and-charged-espionage

    Deržavna služba statystyky Ukraïny. (2001). Čysel’nist‘ osib okremyx etnohrafičnyx hrup ukrainskoho etnosu ta ïx ridna mova. Získané 26. augusta 2021 z Vseukraïns’kyj perepys naselennja 2001: http://2001.ukrcensus.gov.ua/results/nationality_population/nationality_popul2/select_5/?botton=cens_db&box=5.5W&k_t=00&p=0&rz=1_1&rz_b=2_1&n_page=1

    Duć-Fajfer, O. (2016). Literatura a proces rozwoju i rewitalizacja tożsamości językowej na przykładzie literatury łemkowskiej. In J. Olko, T. Wicherkiewicz, & R. Borges (eds.), Integral Strategies for Language Revitalization (pp. 177-178). Varšava, Poľsko: Faculty of „Artes Liberales“, University of Warsaw. Získané z http://revitalization.al.uw.edu.pl/Content/Uploaded/Documents/integral-strategies-a91f7f0d-ae2f-4977-8615-90e4b7678fcc.pdf#page=177

    DuPont, Q. (2018, máj). The Cryptological Origins of Machine Translation, from al-Kindi to Weaver. (C. Mitchell, & R. Raley, eds.) amodern(8), 1-20. Získané 22. mája 2021 z http://amodern.net/article/cryptological-origins-machine-translation/

    Eberhard, D. M., Simons, G. F., & Fennig, C. D. (2021). Koľko jazykov je na svete? (D. M. Eberhard, G. F. Simons, & C. D. Fennig, eds.) Získané 13. júna 2021 z Ethnologue: Languages of the World: https://www.ethnologue.com/guides/how-many-languages

    Fortson IV, B. W. (2004). Indo-európsky jazyk a kultúra. Malden, MA, USA: Blackwell Publishing.

    Google. (2021, 8. júna). Language Support | Cloud Translation. Získané 13. júna 2021 z Google Cloud: https://cloud.google.com/translate/docs/languages

    Hajlaoui, N., Kolovratnik, D., Vaeyrynen, J., Steinberger, R., & Varga, D. (2014). DCEP -Digital Corpus of the European Parliament. Language Resources and Evaluation Conference (LREC 2014), (pp. 3164-3171). Reykjavík, Island. Získané 19. júna 2021 z http://www.lrec-conf.org/proceedings/lrec2014/pdf/943_Paper.pdf

    Horoszczak, J. (2004). Słownik łemkowsko-polski, polsko-łemkowski. Varšava, Poľsko: Fundacja Wspierania Mniejszości Łemkowskiej Rutenika.

    Jassem, W. (2003, jún). Polish. Journal of the International Phonetic Association, 33(1), 103-107. doi:10.1017/S0025100303001191

    Jónsson, H. P., Símonarson, H. B., Snæbjarnarson, V., Steingrímsson, S., & Loftsson, H. (2020). Experimenting with Different Machine Translation Models in Medium-Resource Settings. In P. Sojka, I. Kopeček, K. Pala, & A. Horák (Ed.), Text, Speech, and Dialogue. TSD 2020. Lecture Notes in Computer Science. 12284, p. 2. Springer, Cham. doi:10.1007/978-3-030-58323-1_10

    Kerča, I. (2007). Slovnyk Rusyn’sko-Ruskŷj (vol. 1). Užhorod, Ukrajina: PolyPrynt.

    Kocmi, T. (2020). CUNI Submission for the Inuktitut Language in WMT News 2020. Proceedings of the 5. Conference on Machine Translation (WMT), (pp. 171–174). Association for Computational Linguistics. Získané 19. júna 2021 z https://www.aclweb.org/anthology/2020.wmt-1.14

    Kocmi, T., & Bojar, O. (2019). CUNI Submission for Low-Resource Languages in WMT News 2019. Proceedings of the Fourth Conference on Machine Translation (WMT). Volume 2: Shared Task Papers (Day 1), pp. 234–240. Florencia, Taliansko: Association for Computational Linguistics. Získané 13. júna 2021 z https://www.aclweb.org/anthology/W19-5322.pdf

    Lewis-Kraus, G. (2016, 14. decembra). The Great A.I. Awakening (Going Neural). The New York Times, s. 40. Získané z https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

    Macken, L., Prou, D., & Tezcan, A. (2020, 23. apríla). Kvantifikácia účinku strojového prekladu v procese produkcie vysokokvalitného ľudského prekladu. Informatics, 7(2). doi:10.3390/informatics7020012

    Maximova, S., Noyanzina, O., Omelchenko, D., & Maximova, M. (2018). The Russian-speakers in the CIS countries: migration activity and preservation of the Russian language. In P. Vladimirovich (Ed.), 2018 International Scientific Conference “Investment, Construction, Real Estate: New Technologies and Special-Purpose Development Priorities” (ICRE 2018) , 212. Irkutsk, Rusko. doi:10.1051/matecconf/201821210005

    Microsoft. (n.d.). Turn airplane mode on or off. Získané 9. júna 2021 z Microsoft: https://support.microsoft.com/en-us/windows/turn-airplane-mode-on-or-off-f2c2e0a1-706f-ff26-c4b2-4a37f9796df1

    NATO Review. (n.d.). About us. Získané 9. júna 2021 z North Atlantic Treaty Organization: https://www.nato.int/docu/review/about.html

    Ng, N., Yee, K., Baevski, A., Ott, M., Auli, M., & Edunov, S. (2019, august). Facebook FAIR’s WMT19 News Translation Task Submission. Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1), 314-319. Florencia, Taliansko: Association for Computational Linguistics. doi:10.18653/v1/W19-5333

    Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., . . . Auli, M. (2019). fairseq: A Fast, Extensible Toolkit for Sequence Modeling. Proceedings of NAACL-HLT 2019: Demonstrations. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pp. 48-53. Minneapolis, MN: Association for Computational Linguistics. doi:10.18653/v1/N19-4009

    Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). BLEU: a Method for Automatic Evaluation of Machine Translation. Proceedings of the 40. Annual Meeting on Association for Computational Linguistics (pp. 311-318). Philadelphia, pa: Annual Meeting of the Association for Computational Linguistics.

    Post, M. (2018, 12. septembra). A Call for Clarity in Reporting BLEU Scores. Amazon Research.

    Rabus, A., & Scherrer, Y. (2017). Lexicon Induction for Spoken Rusyn – Challenges and Results. Proceedings of the 6. Workshop on Balto-Slavic Natural Language Processing, (pp. 27-32). Valencia, Španielsko.

    Scherrer, Y., & Rabus, A. (2017). Multi-source morphosyntactic tagging for Spoken Rusyn. Proceedings of the Fourth Workshop on NLP for Similar Languages, Varieties and Dialects (pp. 84-92). Valencia, Španielsko: Association for Computational Linguistics. doi:http://dx.doi.org/10.18653/v1/W17-1210

    Scherrer, Y., & Rabus, A. (2019, september). Neural morphosyntactic tagging for Rusyn. (R. Mitkov, Ed.) Natural Language Engineering, 25(5), pp. 633-650. doi:10.1017/S1351324919000287

    Shea, J. (2016, 5. decembra). What can we learn today from the „traja mudrci“? NATO Review. Získané 26. mája 2021 z https://www.nato.int/docu/review/articles/2016/12/05/what-can-we-learn-today-from-the-three-wise-men/index.html

    Ad hoc expertná skupina UNESCO pre ohrozené jazyky. (2003). Vitalita a ohrozenie jazykov. Medzinárodné stretnutie expertov o programe UNESCO na ochranu ohrozených jazykov. Paríž: UNESCO. Získané 19. júna 2021 z http://www.unesco.org/new/fileadmin/MULTIMEDIA/HQ/CLT/pdf/Language_vitality_and_endangerment_EN.pdf

    Vasmer, M. J. (n.d.). Etimologičeskyj Slovar‘ Russkogo Jazyka. (O. N. Trubačëv, Trans.) Moskva: AST (Pôvodné dielo publikované 1950).

    Watral, M. (2015, február). Rewitalizacja Łemków. Znak(717), 38-44. Získané 24. augusta 2021 z https://www.miesiecznik.znak.com.pl/7172015marta-wartalrewitalizacja-lemkow/

    Watral, M. (2016). Postawy względem języka łemkowskiego – wzór i jego realizacja. In J. Olko, T. Wicherkiewicz, & R. Borges (eds.), Integral Strategies for Language Revitalization (pp. 221-260). Varšava, Poľsko: Faculty of „Artes Liberales“, University of Warsaw. Získané 24. augusta 2021 z http://revitalization.al.uw.edu.pl/Content/Uploaded/Documents/integral-strategies-a91f7f0d-ae2f-4977-8615-90e4b7678fcc.pdf#page=243

    Ziemski, M., Junczys-Dowmunt, M., & Pouliquen, B. (2016). Paralelný korpus Organizácie Spojených národov v1.0. Zborník z Desiatej medzinárodnej konferencie o jazykových zdrojoch a hodnotení (LREC’16), (str. 3530–3534). Portorož, Slovinsko. Získané z https://www.aclweb.org/anthology/L16-1561


  • Neuronový strojový preklad s umelou inteligenciou vo viacjazyčnom výcviku predstavený na I/ITSEC 2021

    Neuronový strojový preklad s umelou inteligenciou vo viacjazyčnom výcviku predstavený na I/ITSEC 2021

    ORLANDO, 2. decembra (Orynycz.com) – Bola nám česť predstaviť prelomové objavy v našej štúdii Áno, hovorím… AI Neuronový strojový preklad vo viacjazyčnom výcviku na konferencii I/ITSEC 2021 Národnej asociácie obranného priemyslu (NDIA), najväčšom svetovom podujatí v oblasti modelovania, simulácie a výcviku, s 13 000 osobnými účastníkmi zo 47 krajín, zastupujúcich vlády, univerzity, korporácie a armády, vrátane veliteľa Námornej pechoty Spojených štátov generála Davida H. Bergera a náčelníka námorných operácií admirála Michaela Gildaya.

    Osobitné poďakovanie patrí predsedovi 7. sekcie pre vznikajúce koncepty a inovatívne technológie (ECIT) Brianovi Stensrudovi, Ph.D. a zástupcovi sekcie Neilovi Stagnerovi z Veliteľstva systémov Námornej pechoty Spojených štátov za všetku podporu, ktorá to umožnila.

    Prelomové objavy

    Na lacných, vzduchom oddelených notebookoch v bezpečných poľných podmienkach naše prekladové systémy dosiahli:

    • Kvalita prekladu – skóre BLEU o 59 % lepšie ako skóre profesionálnych lingvistov pre jazykový pár ruština – angličtina
    • Prvé použiteľné strojové preklady z lemkovčiny do angličtiny na svete
    • Rýchlosti prekladu z ruštiny do angličtiny o 1 170 % rýchlejšie ako ľudský preklad (v reálnom čase)

    Pre viac informácií si pozrite celú štúdiu.