Kategória: Olvassa el a lektorált tudományos publikációkat

  • BLEU Skies for Endangered Language Revitalization: Lemko Rusyn és az ukrán neurális AI fordítási pontossága az egekbe szökik

    BLEU Skies for Endangered Language Revitalization: Lemko Rusyn és az ukrán neurális AI fordítási pontossága az egekbe szökik

    Absztrakt

    A felgyorsuló globális nyelvvesztés, amely a tiltott szerek használatának, a 2-es típusú cukorbetegségnek, a mértéktelen ivásnak és a testi sértéseknek az emelkedett gyakoriságával, valamint a fiatalok hatszoros öngyilkossági arányával jár együtt, egyre nagyobb kihívást jelent a kisebbségi, őslakos, menekült, gyarmatosított és bevándorló közösségek számára. Olyan környezetben, ahol a generációk közötti átadás gyakran megszakad, a mesterséges intelligencia neurális gépi fordítórendszerek képesek az örökölt nyelvek újjáélesztésére és az új beszélők képessé tételére, mivel lehetővé teszik számukra, hogy azonnali fordítással megértsék és megértsék őket. A mesterséges intelligencia megoldások azonban problémákat vetnek fel, például a megfizethetetlen költségeket és a kimenet minőségével kapcsolatos problémákat. Megoldást jelenthet a neurális motorok párosítása a klasszikus, szabályalapú motorokkal, amelyek lehetővé teszik a mérnökök számára a kölcsönszavak megtisztítását és a domináns nyelvek interferenciájának semlegesítését. Ez a munka a LemkoTran.com oldalon alkalmazott motor átalakítását írja le, hogy lehetővé tegye a lemkó nyelvre való fordítást és a lemkó nyelvből való fordítást, amely egy súlyosan veszélyeztetett, kisebbségi ukrán genetikai besorolású előadás, amely a Lengyelország és Szlovákia közötti határvidéken honos (ahol ruszin nyelvként is emlegetik). A szótáralapú fordítási modulokat morfológiailag és szintaktikailag megalapozott főnév-, ige- és melléknév-generátorokkal látták el, amelyeket 877 lemmával és 708 szószedettel együtt tápláltak, és az egész rendszert 9518 automatikus, kodifikációs hivatkozásokkal ellátott, átmenő minőségellenőrzési tesztekkel szegecselték le. Ennek a munkának a gyümölcse a legutóbbi publikáció óta 23%-os javulás az angol nyelvű fordítás minőségében, és 35%-os minőségi növekedés az angolról lemkói nyelvre történő fordításban, olyan fordításokat biztosítva, amelyek minden mérőszámban felülmúlják a Google Translate szolgáltatásait, és 396%-kal magasabb pontszámot érnek el, mint a Google ukrán nyelvű szolgáltatása, amikor lemkói nyelvre fordítanak.

    Kérjük, idézze a következőket: (2023). BLEU égisze alatt a veszélyeztetett nyelvek revitalizációja: Lemko Rusyn and Ukrainian Neural AI Translation Accuracy Soars. In: Degen, H., Ntoa, S. (szerk.) Artificial Intelligence in HCI. HCII 2023. Lecture Notes in Computer Science(), vol 14051. Springer, Cham. https://doi.org/10.1007/978-3-031-35894-4_10

    Bővebben: BLEU Skies for Endangered Language Revitalization: Lemko Rusyn és az ukrán neurális AI fordítási pontossága az egekbe szökik

    A hozzájárulásnak ezt a változatát a szakértői értékelés után elfogadták publikálásra, de ez nem a hivatalos változat, és nem tükrözi az elfogadást követő javításokat vagy javításokat. A változat online elérhető a https://doi.org/10.1007/978-3-031-35894-4_10 címen. Ennek az elfogadott változatnak a felhasználására a kiadó elfogadott kézirat felhasználási feltételei vonatkoznak: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms.

    1 Bevezetés

    1.1 A probléma

    A nyelvek negyedévenként legalább egyet veszítenek, és ez a veszteség 2062-re megháromszorozódik, 2100-ra pedig ötszörösére nő, ami több mint 1500 beszélő közösséget érint [1, 163. és 169. oldal]. Ezek az eredmények összefüggésbe hozhatók az illegális szerhasználat [2, 179. o.], a 2-es típusú cukorbetegség [3], a mértéktelen alkoholfogyasztás és a testi sértés [4] megnövekedett gyakoriságával, valamint a fiatalok öngyilkossági arányának hatszorosával, ha a közösség tagjainak kevesebb mint fele rendelkezik nyelvtudással [5].

    Egy nemrégiben az Egyesült Államokban végzett tanulmány szerint az őslakosok nyelvhasználata pozitív hatással van az egészségre, függetlenül a nyelvtudás szintjétől [6]. Egy lengyelországi beszélőkön végzett kísérlet azt találta, hogy a lemkó használata mérsékli a trauma kognitív elérhetőségéből eredő érzelmi, viselkedési és depressziós tüneteket [7].

    A mesterséges intelligencia gépi fordítás a haldokló és alvó nyelvek újjáélesztésével a fent említett védőhatások terjesztésében az örökséget beszélőkre is szolgálatot tehet [8, 577. o.]. Például az új beszélők azonnal helyes szöveget állíthatnának elő, és élvezhetnék az olvasásértést, ha az automatikus gépi fordítóberendezéseket segítségül használnák, amíg a teljes, önálló folyékony beszédkészség el nem érhető.

    1.2 A vizsgált rendszer

    Nyelv

    A lemko egy véglegesen vagy súlyosan veszélyeztetett [9, 177-178. o.], délnyugat-ukrajnai genetikai besorolású [10, 52. o.; 11, 39. o.] kelet-szláv előadás, amely a Lengyel Köztársaság és a Szlovák Köztársaság közötti határvidéken őshonos; egyesek ruszinnak nevezik [11, 39. o.; 12].

    Keleti határok

    A lemkótól keletre megkülönböztető egyedi izoglossza a rögzített paroxitóniás (utolsó előtti szótag) hangsúly, amely a lengyel és a kelet-szlovák nyelvjárásokkal közös [10, 161-162. és 972-973. o.; 11, 50. o.; 13, 70-73. o.], és Kelet-Szlovákiában legalább a Laborec folyóig terjed, és utána egy átmeneti zóna húzódik [13, 70. o.; 11, 50. o.]. Eközben Lengyelországban a Lemko történelmi kiterjedése legalább az Osławica vagy a Wisłok folyókig terjed, és egy átmeneti zóna ezeken túlra terjed [11, 50. o.].

    Nyugati határok

    Lemko történelmi nyugati határai a Poprad és a Dunajec folyók [14, 459. o.].

    Helyszín

    Az anyanyelvi beszélők ősi falvai, amelyek interjúi a korpuszt alkotják, a mai Lessor Poland tartomány jelenlegi közigazgatási határain belül találhatók, amelynek fővárosa Krakkó.

    Lemko névÁtírásLengyel névMegyeszékhelyKözségi székhely
    ІзбыIzbŷIzbyGorliceUście Gorlickie
    ҐлaдышiвGladŷšivGładyszówGorliceUście Gorlickie
    ЧорнеČorneCzarneGorliceSękowa
    ДолгеDolheDługieGorliceSękowa
    БілцарьоваBilcarʹovaBinczarowaNowy SączGrybów
    ФльоринкаFlʹorynkaFlorynkaNowy SączGrybów
    ЧырнаČŷrnaCzyrnaNowy SączKrynica-Zdrój
    1. táblázat. A korpuszanyagban megkérdezett anyanyelvi beszélők ősi falvai.

    2 A technika jelenlegi állása

    Tavaly publikálták a világ első minőségi értékelési eredményeit a Lemkóba történő gépi fordításokról: BLEU 6,28, ami majdnem háromszorosa a Google Translate ukrán szolgáltatásának[1] (BLEU 2,17) [15, 570. o.]. Egy évvel korábban kollégáimmal közöltük és bemutattuk a világ első Lemko-angol gépi fordítási eredményeit: BLEU 14.57 [16].


    [1] Közzététel: fizetett ukrán, lengyel és orosz fordítási minőségellenőrző szakemberként dolgozom a Google Translate projektben. Ügyfelem székhelye a kaliforniai San Franciscóban található.

    A motort a https://www.LemkoTran.com egyetemes erőforráskeresőben telepítették és tették szabadon elérhetővé, ahol 2017 ősze óta működik egy átíró motor. A fordítómotorra először nyomtatásban Dr. Scherrer és Rabus utaltak a Cambridge University Press folyóirat Natural Language Engineering című folyóiratában 2019-ben [17].

    3 Anyagok és módszerek

    3.1 Anyagok

    A kísérletet egy kétnyelvű korpuszon végeztük, amely a lengyelországi ősök földjéről való kényszerű kitelepítések túlélőivel és gyermekeivel készített interjúk Lemko cirill betűs átirataiból és angol fordításaiból állt. Az átiratokat és fordításaikat[1] 3267 szegmensben igazítottuk egymáshoz, a Microsoft Word 68 944 lemkó forrásszót és 81 188 angol célszót adott meg.


    [1] Az átiratok elkészítésére és lefordítására a Delaware állambeli Wilmingtonban működő John és Helen Timo Alapítvány bérelt fel, akik aztán a munkadarabokat tudományos kutatási és fejlesztési törekvéseimhez adományozták.

    Az igazság forrásai közé tartoztak Jarosław Horoszczak [18], Petro Pyrtej [19], Ihor Duda [20] és Janusz Rieger [21] szótárai, valamint Henryk Fontański és Mirosława Chomiak [22] és Petro Pyrtej [23] nyelvtárai.

    3.2 Módszerek

    Motorfejlesztések

    Ehhez a kísérlethez a LemkoTran.com-nál alkalmazott motort újonnan épített generátorokkal látták el, amelyek a beszédrész, a nyelvtani eset és a szám alapján tájékozódtak, hogy nyelvtanilag és szintaktikailag megfelelő fordításokat készítsenek 1585 szótári bejegyzéshez, amelyeknek körülbelül a fele nem flektál a lengyel vagy a lemkói nyelvben, ami lehetővé teszi az egyszerű helyettesítést.

    Minőségbiztosítási vizsgálatok

    A minőséget 9518 teszt biztosította, amelyeket lehetőség szerint kereszthivatkozásokkal vetettek össze a fent az anyagok között felsorolt Lemko-kodifikációkkal, nyelvtanokkal és szótárakkal. Maguk a tesztek igazolják, hogy a rendszer a kívánt módon fordítja le az adott kifejezéseket.

    LeírásMennyiség
    Főnév törzse414
    Igetörzs296
    Melléknév törzse167
    Főnév, személyes87
    Főnév, egyéb178
    Számok86
    Egyéb szótári bejegyzések357
    Összesen1,585
    2. táblázat. Rendszer szókincs.

    Szabályalapú gépi fordítás (RMBT)

    A szöveget lemkói vagy lengyel megjelenésűvé tették a karaktersorozatok és különösen a szóvégek cseréjével.

    Lengyel szekvenciaLemko szekvenciaPozíció
    owaćuwatyVégleges
    iamiiamyVégleges
    ająajutVégleges
    zezoKezdeti
    podpidKezdeti
    3. táblázat. Példa a karaktersorozat helyettesítésére.

    Fordításminőségi pontozás

    A fordítás minőségét az iparági szabványos mérőszámok alapján mértük a SacreBLEU eszköz alapértelmezett beállításainak használatával, amelyet Matt Post [24] talált ki az Amazon Researchnél. Az összehasonlíthatóság kedvéért a lengyel nyelvet Lemko cirill betűkkel adtuk vissza, ugyanúgy, mint a legutóbbi kísérletben [15, 573. o.].

    Kétnyelvű értékelési alvállalkozó (BLEU)

    Ez az n-gram-alapú metrika évtizedek óta széles körben elterjedt. Az Egyesült Államokban az IBM T. J. Watson Kutatóközpontjában fejlesztették ki a Defense Advanced Research Projects Agency (DARPA) támogatásával és az Egyesült Államok Űr- és Haditengerészeti Hadviselési Rendszerek Parancsnokságának (SPAWAR) felügyeletével [25].

    Fordítási szerkesztési arány (TER)

    Ez a mérőszám azt tükrözi, hogy hány szerkesztés szükséges ahhoz, hogy a kimenet szemantikailag megközelítse a helyes fordítást, és a BLEU-nál és más n-gramm-alapú mérőszámoknál toleránsabb legyen a kifejezésbeli eltolódásokkal szemben. Ezt úgy határozzuk meg, hogy a hipotézis és a referencia közötti szerkesztési távolságot elosztjuk a referencia átlagos szószámával. Fejlesztését az Egyesült Államokban a DARPA is támogatta [26].

    Karakter n-gram F-pontszám (chrF)

    Ez az európai metrika bizonyítottan nagyon jól korrelál az emberi értékelésekkel, sőt, még a BLEU és a TER értékeket is felülmúlja [27].

    4 Eredmények és vita

    A kísérleti rendszer, a LemkoTran.com, minden mérőszámban felülmúlta a Google Translate szolgáltatásait. Az angol-Lemko fordítás BLEU minőségi pontszámai 35%-kal javultak a legutóbb közzétett eredményekhez képest [15], és négyszer jobb eredményeket produkáltak, mint a Google Translate következő legjobb ajánlata, az ukrán szolgáltatás. Eközben a Lemko-angol fordítás minősége 23%-kal javult a legutóbb közzétett eredményekhez képest [16], és 16%-kal magasabb BLEU-pontszámokat ért el, mint a Google Translate által elért legjobb eredmény, amely az esetek 76%-ában automatikusan ukránnak, 16%-ában orosznak, 6%-ában pedig fehérorosznak ismerte fel a Lemkót.

    4.1 Angol-Lemko fordítási minőség

    Pontszámok

    A LemkoTran.com oldalon használt motor minden tekintetben felülmúlta a Google Translate fordítóprogramot az angolról lemkóra történő fordítás során. A kísérletben a következő legmagasabb pontszámot elért rendszer vagy a Google Translate ukrán szolgáltatásának eredménye (a BLEU vagy a chrF mérőszámok alapján) vagy a lengyel szolgáltatásé (a TER mérőszám alapján) volt.

    BLEU

    A LemkoTran.com-nál alkalmazott rendszer fordítási minősége a legelterjedtebb BLEU-mérőszámmal mérve 8,48-ra emelkedett, ami 35%-os javulást jelent a legutóbb 2022-ben [15] közzétett eredményekhez képest, és immár négyszerese a Google Translate legmagasabb pontszámának.

    Ábra. 1. Angol-Lemko fordítás minősége a Bilingual Evaluation Understudy (BLEU) pontszám, Google Cloud Neural Machine Translation (NMT) szolgáltatások és a LemkoTran.com összehasonlítása alapján. Minél magasabb, annál jobb.
    chrF

    A LemkoTran.com motor érte el a legjobb angol-lemkó karakter n-gram f-értéket (chrF 37,30), ami 37%-kal magasabb, mint a következő legjobb, a Google Translate ukrán szolgáltatása. Eközben a Google Translate orosz szolgáltatása a Lemko-korpuszhoz mérve e mérőszámmal magasabb pontszámot ért el, mint lengyel és fehérorosz társai.

    Ábra. 2. Angol-Lemko fordítás minősége a karakter n-gram F-score (chrF) pontszámmal mérve, Google Cloud Neural Machine Translation (NMT) és a LemkoTran.com kísérleti rendszerrel szemben. Minél magasabb, annál jobb.
    TER

    A LemkoTran.com motor érte el a legjobb angol-lemkó fordításszerkesztési arányt (TER), 81,33 ponttal. A Google Translate lengyel szolgáltatása a második legjobb eredményt érte el, amelyet szorosan követett az ukrán szolgáltatása.

    Ábra. 3. Angolról Lemkóra fordítási szerkesztési arány (TER), Google Cloud Neural Machine Translation (NMT) versus LemkoTran.com. Minél alacsonyabb, annál jobb.

    Minták

    A fordítórendszerek kimenete az alábbiakban látható, ha angolul táplálják.

    BemenetA mi gyerekeink is okosak voltak. De hol kellett volna tanulniuk?
    LeírásKimenetÁtírásMinőségi pontszámok
    Lemko referencia
    (anyanyelvi beszélő)
    В нас діти тіж были мудры, але де мали ся inчыти?V nas dity tiž bŷly mudrŷ, ale de maly sja včŷty?BLEU 100
    chrF2 100
    TER 0
    Lemkó fordítás a
    LemkoTran.com által Lemko nyelvre fordítva.
    Нашы діти тіж были мудры. але де мали ся inчыти? Našŷ dity tiž bŷly mudrŷ. ale de maly sja včŷty? BLEU 58,34
    chrF2 79,03
    TER 27,27
    Google Translate (vezérlés)Fordítás ukrán nyelvreНаші діти теж були розумними. Але де вони мали inчитися? Naši dity tež buly rozumnymy. Ale de vony maly včytysja? BLEU 4,41
    chrF2 25,80
    TER 72,73
    Fordítás oroszraНаши дети тоже были умными. Но где им было учиться? Naši deti tože byli umnymi. No gde im bylo učitʹsja? BLEU 3,71
    chrF2 16,95
    TER 90,91
    Fordítás lengyel nyelvreНаше дзєці теж били мондре. Алє ґдзє мєлі сє учиць? Naše dzjeci tež byly mondre. Alje gdzje mjeli sje učycʹ? BLEU 3,12
    chrF2 13,84
    TER 100
     Fehérorosz fordításРазумныя былі і нашы дзеці. Але дзе яны павінны былі вучыцца? Razumnyja byli i našy dzeci. Ale dze jany pavinny byli vučycca? BLEU 3,09
    chrF2 12,83
    TER 100
    4. táblázat. Fordítási hipotézisek összehasonlítása az angol bemenethez.
    BemenetÉs általában véve a lengyelországi lemkóknak nincs olyan vezetőjük, hogy úgy mondjam, aki mondana valamit.
    LeírásTermékÁtírásMinőségi pontszámok
    Lemko referencia (anyanyelvi beszélő)А воґулі Лемкы in Польщы nem мают такого, же so повім, такого лідера, котрий бы штоси повіл.A voguli Lemkŷ v Pol’ščŷ ne majut takoho, že tak povim, takoho lidera, kotryj bŷ štosy povil.BLEU 100
    chrF2 100
    TER 0
    LemkoTran.com fordítása Lemko nyelvreІ генеральні Лемкы in Польщы nem мают лидера, же so повім, котрий бы штоси повіл.I heneral „ni Lemkŷ v Pol” ščŷ ne majut lydera, že tak povim, kotryj bŷ štosy povil.BLEU 55,58
    chrF2 65,32
    TER 29,41
    Google Translate (vezérlés)Fordítás lengyel nyelvreІ ґенеральнє Лемковє in Польсце нє майон лідера, же so повєм, ктури би цось повєдзял.I general’nje Lemkovje v Pol’sce nie majon lidera, že tak povjem, ktury by cos’ povjedzjal.BLEU 9,26
    chrF2 29,29
    TER 82,35

    Fordítás ukrán nyelvreІ взагалі, лемки in Польщі nem мають лідера, so би мовити, який би щось сказав.I vzahali, lemky v Pol’shchi ne mayut’ lidera, tak by movyty, yakyj by shchos’ skazav.BLEU 5,15
    chrF2 26,56
    TER 82,35
    Fordítás oroszraИ вообще, у лемков in Польше нет, so сказать, лидера, который бы valami mondta.I voobšče, u lemkov v Polʹše net, tak skazatʹ, lidera, kotoryj by čto-to skazal.BLEU 2,96
    chrF2 25,87
    TER 88,24
     Fehérorosz fordításІ ўвогуле лэмкі ў Польшчы ня маюць лідэра, így бы мовіць, які б б nemшта сказаў.I ŭvohule lèmki ŭ Pol′ščy nja majuc′ lidèra, tak by movic′, jaki b nešta skazaŭ.BLEU 2,72
    chrF2 18,05
    TER 94,12
    5. táblázat. Fordítási hipotézisek összehasonlítása az angol bemenethez.

    Lemko to English fordítás

    Pontszámok

    A LemkoTran.com-nál alkalmazott motor minden mérőszámban felülmúlta a Google Fordítót, amely a szabványos ukrán nyelvből történő fordításban mindig a második legjobb volt, majd a forrásnyelv automatikus felismerése, majd a fehérorosz nyelvből történő fordítás, majd a lengyel nyelv, és az orosz nyelv mindig az utolsó helyen végzett. A Google Fordító az esetek 76%-ában ukránként, 16%-ában oroszként, 6%-ában fehéroroszként, a többi esetben pedig különféle cirill betűs nyelvként (pl. mongol) ismerte fel a Lemkót.

    BLEU

    A LemkoTran.com angolra fordításkor 17,95 BLEU pontszámot ért el, ami 23%-os javulást jelent a legutóbb közzétett 14,57-es BLEU eredményhez képest, és 16%-kal magasabb, mint a Google Translate ukrán szolgáltatásának 15,43-as BLEU pontszáma.

    Ábra. 4. Lemko-angol fordítás minősége a Bilingual Evaluation Understudy (BLEU) pontszám, Google Cloud Neural Machine Translation (NMT) szolgáltatások és a kísérleti rendszer LemkoTran.com összehasonlítása. Minél magasabb, annál jobb.
    chrF

    A LemoTran.com-nál alkalmazott motor az angol nyelvre történő fordítás során 45,89-es karakter n-gram f-pontszámot (chrF) ért el, ami 5%-kal jobb, mint a Google Translate ukrán szolgáltatásának pontszáma.

    Ábra. 5. Lemko-angol fordítás minősége a karakter n-gram F-score (chrF) pontszámmal mérve, Google Cloud Neural Machine Translation (GNMT) és a kísérleti rendszer LemkoTran.com. Minél magasabb, annál jobb.
    TER

    A LemkoTran.com 70,38-as fordítási arányt (TER) ért el angolra fordításkor, ami 7%-kal jobb, mint a Google Translate ukrán szolgáltatásának pontszáma.

    Ábra. 6. Lemko-angol fordítás szerkesztési aránya (TER), Google Cloud Neural Machine Translation (GNMT) és a LemkoTran.com kísérleti rendszer összehasonlítása. Minél alacsonyabb, annál jobb.

    Minták

    A fordítórendszerek kimenete az alábbiakban látható, ha angolul táplálják.

     LeírásTermékMinőség
    pontszámok
    Lemko bemeneti átirata anyanyelvi beszélő által beszélt nyelven LemkoЯк розділяме языкы, то мала-м контакт з польскым, то nem было így, же пішла-м до iskola без польского, бо зме мали сусідів Поляків.n/a
    ÁtírásJak rozdiljame jazŷkŷ, to mala-m kontakt z pol „skŷm, to ne bŷlo tak, že pišla-m do školŷ bez pol” skoho, bo zme maly susidiv Poljakiv.n/a
    Referenciafordítás kétnyelvű szakember általAmi a nyelvek szétválasztását illeti, a lengyel nyelvvel volt kapcsolatom. Nem úgy kezdtem az iskolát, hogy nem tudtam lengyelül, mert lengyel szomszédaink voltak. BLEU 100
    chrF2 100
    TER 0
    Lemkóból a LemkoTran.com rendszerével készült fordítás.Amikor szétválasztottuk a nyelveket, én kapcsolatba kerültem a lengyel nyelvvel, nem volt olyan, hogy lengyel nélkül jártam iskolába, mert voltak lengyel szomszédaink.BLEU 45,84
    chrF2 69,60
    TER 32,00
    Google Translate (vezérlés)ukrán nyelvből (92%-os biztonsággal automatikusan felismerhető)Ahogy osztjuk a nyelveket, akkor érintkeztem lengyelül, aztán nem így volt, és lengyel nélkül jártam iskolába, mert a lengyelek voltak a szomszédaim.BLEU 15,87
    chrF2 54,38
    TER 72,00
    fehéroroszulAhogy szétválasztjuk a nyelveket, akkor kevéssé érintkeztem lengyelül, aztán nem így volt, hanem lengyel nélkül jártam iskolába, mert kevés lengyel szomszédunk volt.BLEU 11,76
    chrF2 58,92
    TER 68,00
    oroszulAhogy terjesztettük a nyelveket, akkor kevés volt a kapcsolat a lengyellel, aztán nem így volt, de én lengyel nélkül jártam iskolába, mert a kígyók szukidok voltak Poljakivban.BLEU 6,87
    chrF2 42,66
    TER 92,00
    lengyelülAhogy terjesztem a nyelvet, kevés kapcsolatom van a lengyel nyelvvel, nem volt olyan, hogy lengyel nélkül jártam iskolába, mert a kis lengyel nyelvemet meg fogom változtatni.BLEU 5,02
    chrF2 45,35
    TER 84,00
    6. táblázat. Lemko bemenetre vonatkozó fordítási hipotézisek összehasonlítása.

    5 Következtetés

    A morfológiailag és szintaktikailag tájékozott generátorok neurális motorokhoz való kapcsolása legalább egyharmaddal javíthatja a gépi fordítás minőségét, miközben a mérnökök számára lehetővé teszi a kölcsönszavak eltávolítását és más domináns nyelvi interferenciák ellensúlyozását, valamint a szabványoknak való megfelelés biztosítását, például a kisebbségi nyelvek kodifikációját. A mesterséges intelligenciamodellek tökéletlenségei miatt a minőségi pontszámok üvegplafonját is le lehet dönteni a jó mérnöki munka segítségével. A lemkó, valamint az alacsony erőforrású, őshonos kisebbségi nyelvek esetében a fordítási minőség, valamint az élesztési forradalmak tekintetében a horizonton túl már csak a határ a csillagos ég.

    Köszönetnyilvánítás

    Szeretnék köszönetet mondani Dr. Ming Qian-nak a Charles River Analytics-től a kísérlet elvégzéséhez adott inspirációért, Michael Decerbo-nak a Raytheon BBN Technologies-tól és Dr. James Joshua Pennington-nak az értő megjegyzéseikért, valamint Dr. Yves Scherrer-nek a Helsinki Egyetemről a projekt iránti érdeklődéséért és ötleteiért.

    Hivatkozások

    1. Bromham, L., Dinnage, R., Skirgård, H. Ritchie, A., Cardillo, M., Meakins, F., Greenhill, S., Hua, X.: A nyelvek veszélyeztetettségének globális előrejelzői és a nyelvi sokszínűség jövője. Nature Ecology & Evolution 6, 163-173 (2022) . https://doi.org/10.1038/s41559-021-01604-y.
    2. Gonzalez, M., Aronson, B., Kellar, S., Walls, M., Greenfield, B.: Language as a Facilitator of Cultural Connection. ab-Original 1(2), 176-194 (2017). https://doi. org/10.5325/aboriginal.1.2.0176.
    3. Oster, R., Grier, A., Lightning, R., Mayan, M., Toth, E.: Kulturális folytonosság, hagyományos őslakos nyelv és cukorbetegség az albertai első nemzeteknél: vegyes módszertani vizsgálat. International Journal for Equity in Health 13, 92 (2014). https://doi.org/10.1186/s12939-014-0092-4. https://doi.org/10.1186/s12939-014-0092-4
    4. Kultúra, örökség és szabadidő: Az őslakos és Torres-szoros-szigeteki nyelvek beszélése. In: 4725.0 – Aboriginal and Torres Strait Islander Wellbeing: A hangsúly a gyermekekre és fiatalokra helyezve. Ausztrál Statisztikai Hivatal (2011). https://www.abs.gov.au/ausstats/abs@.nsf/Latestproducts/1E6BE19175C1F8C3CA257A0600229ADC
    5. Hallett, D., Chandler, M., Lalonde, C..: Aboriginal language knowledge and youth suicide. Cognitive Development 22(3), 392-399 (2007). https://doi.org/10.1016/j.cogdev.2007.02.001. https://doi.org/10.1016/j.cogdev.2007.02.001
    6. Whalen, D., Lewis, M., Gillson, S., McBeath, B., Alexander, B., Nyhan, K.: Az őslakosok nyelvhasználatának és újraélesztésének egészségügyi hatásai: egy reális áttekintés. International Journal for Equity in Health 21, 169. (2022) . https://doi.org/10.1186/s12939-022-01782-6.
    7. Skrodzka, M., Hansen, K., Olko, J., Bilewicz, M.: A kisebbségi nyelv kettős szerepe a történelmi traumában: A lemkó kisebbség esete Lengyelországban. Journal of Language and Social Psychology. 39(4) 551-566 (2020). https://doi.org/10.1177/0261927X20932629. https://doi.org/10.1177/0261927X20932629
    8. Zhang, S., Frey, B., Bansal, M.: ChrEn: Cherokee-English Machine Translation for Endangered Language Revitalization. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 577-595. Association for Computational Linguistics, Online (2020) . http://dx.doi.org/10.18653/v1/2020.emnlp-main.43.
    9. Duć-Fajfer, O.: Literatura a proces rozwoju i rewitalizacja tożsamości językowej na przykładzie literatury łemkowskiej (lengyelül). In: Olko, J., Wicherkiewicz, T., Borges, R. (szerk.) Integral Strategies for Language Revitalization, 1. kiadás, pp. 175-200. Faculty of „Artes Liberales”, University of Warsaw, Varsó (2016) . https://culturalcontinuity.al.uw.edu.pl/resource/integral-strategies-for-language-revitalization/.
    10. Shevelov, G.: Az ukrán nyelv történeti fonológiája (ukrán fordítás). Vakulenko, S., Danylenko, A. (ford.), Ushkalov, L. (szerk.). Naukove vydavnyctvo „AKTA”, Harkiv (2002, eredeti mű 1979-ben jelent meg) . http://irbis-nbuv.gov.ua/ulib/item/UKR0001641.
    11. Rieger, J.: Stanovysko i zrižnycjuvanja „rusynskŷx” dialektiv v Karpatax (in Rusyn). In: Magosci, P. (szerk.) Najnowsze dzieje języków słowiańskich. Rusynʹskŷj jazŷk, pp. 39-66. 2nd edn. Uniwersytet Opolski – Instytut Filologii Polskiej, Opole (2007). https://www.unipo.sk/cjknm/hlavne-sekcie/urjk/vedecko-vyskumna-cinnost/publikacie/26405/
    12. Vaňko, J.: Klasifikacija i holovnŷ znakŷ Karpatʹskŷx Rusynʹskŷx dialektiv (in Rusyn). In: Magosci, P. (szerk.) Najnowsze dzieje języków słowiańskich. Rusynʹskŷj jazŷk, pp. 67-84. 2nd edn. Uniwersytet Opolski – Instytut Filologii Polskiej, Opole (2007). https://www.unipo.sk/cjknm/hlavne-sekcie/urjk/vedecko-vyskumna-cinnost/publikacie/26405/
    13. Vaňko, J.: A ruszin nyelv Szlovákiában: a szikla és a kemény hely között. In: Duchêne, A. (szerk.): International Journal of the Sociology of Language, 2007. évf. 183. szám, 75-96. o. Walter de Gruyter GmbH, Berlin (2007) . https://doi.org/10.1515/IJSL.2007.005.
    14. Szopolyha, M.: Do pytanʹ etničnoï identyfikaciï ta sučasnyx etničnyx procesiv ukraïnciv Prjašivščyny (ukránul). In: Skrypnyk, H. (szerk.) Ukraïnci-rusyny: etnolʹinhvistyčni ta etnokulʹturni procesy v istoryčnomu rozvytku, pp. 454-487. Ukrán Nemzeti Tudományos Akadémia, Ukrán Tanulmányok Országos Szövetsége, Rylsky Művészettudományi, Folklór- és Etnológiai Intézet, Kijev (2013). http://irbis-nbuv.gov.ua/ulib/item/UKR0001502
    15. Orynycz, P.: Say It Right: AI Neural Machine Translation Empowers New Speakers to Revitalize Lemko. In: Degen, H., Ntoa, S. (szerk.) Mesterséges intelligencia a HCI-ben. HCII 2022. Lecture Notes in Computer Science, vol 13336, pp. 567-580. Springer, Cham (2022) . https://doi.org/10.1007/978-3-031-05643-7_37.
    16. Orynycz, P., Dobry, T., Jackson, A., Litzenberg, K.: Yes I Speak… AI neurális gépi fordítás többnyelvű képzésben. In: Proceedings of the Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2021, Paper no. 21176. National Training and Simulation Association, Orlando (2021) . https://www.xcdsystem.com/iitsec/proceedings/index.cfm?Year=2021&AbID=96953&CID=862.
    17. Scherrer, Y., Rabus, A.: Neural morphosyntactic tagging for Rusyn. In: Mitkov, R., Tait, J., Boguraev, B. (szerk.) Natural Language Engineering, vol. 25, no. 5, pp. 633-650. Cambridge University Press, Cambridge (2019) . https://doi.org/10.1017/S1351324919000287.
    18. Horoszczak, J.: Słownik łemkowsko-polski, polsko-łemkowski (lengyelül). Rutenika, Varsó (2004).
    19. Pyrtej, P.: Korotkyj slovnyk lemkivsʹkyx hovirok (ukránul). Sziverszijja MV, Ivano-Frankivszk (2004).
    20. Duda, I.: Lemkivsʹkyj slovnyk (ukránul). Aston, Ternopil (2011).
    21. Rieger, J.: Słownictwo i nazewnictwo łemkowskie (lengyelül). Wydawnictwo naukowe Semper, Varsó (1995).
    22. Fontański, H., Chomiak, M.: Gramatyka języka łemkowskiego (lengyelül). Wydawnictwo Naukowe „Śląsk”, Katowice (2000).
    23. Pyrtej, P.: Dialekt łemkowski. Fonetyka i morfologia (lengyelül). Hojsak, W. (szerk.). Zjednoczenie Łemków, Gorlice (2013).
    24. Post, M.: Felhívás a BLEU-pontszámok jelentésének egyértelműségére. In: Proceedings of the Third Conference on Machine Translation (WMT), vol. 1, pp. 186-191. Association for Computational Linguistics, Brüsszel (2018) . https://doi.org/10.48550/arXiv.1804.08771.
    25. Papineni, K., Roukos, S., Ward, T., Wei-Jing, Z.: BLEU: módszer a gépi fordítás automatikus értékelésére. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL 02), pp. 311-318. Association for Computational Linguistics, Philadelphia (2002) . https://doi.org/10.3115/1073083.1073135.
    26. Snover, M., Dorr, B., Schwartz, R., Micciulla, L., Makhoul, J.: A Study of Translation Edit Rate with Targeted Human Annotation. In: Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers, pp. 223-231. Association for Machine Translation in the Americas, Cambridge (2006) . https://aclanthology.org/2006.amta-papers.25.
    27. Popović, M.: chrF: character n-gram F-score for automatic MT evaluation. In: Proceedings of the Tenth Workshop on Statistical Machine Translation, pp. 392-395. Association for Computational Linguistics, Lisszabon (2015). http://dx.doi.org/10.18653/v1/W15-3049
  • Winning Hearts & Tongues: A Polish to Lemko Case Study

    Winning Hearts & Tongues: A Polish to Lemko Case Study

    Abstract

    When minority and local languages are lost, national security suffers: not only are significant increases in suicidality, depression, diabetes, assault, and substance abuse often documented, a void is created that has historically been exploited by adversaries. For example, millions from minority language communities ahistorically assume the Russian language and/or identity as their own in Ukraine, Belarus, NATO allies, and even the United States. If native language communication gaps remain in the hands of adversaries only, using their long experience with these languages, NATO remains at a major disadvantage attempting to engage these communities. In Europe, psychic wounds inflicted in part by language loss have not been closed by assimilation. Instead, cities experience bursts of isolating tensions in the West and eastern populations are convinced by adversarial powers that those powers are their true allies, who understand and respect them. Nor is education in the official language a panacea: in the case of Ukraine (and even Spain), non-trivial differences between local lects and the official language create openings for adversaries to fan the flames of separatism.

    Using machine translation engines to empower NATO and its partners in training recruits or acting on the ground in the language closest to their hearts and minds can win immediate ‘us’-ness and showcase NATO’s embraced polycultural vision. Artificial intelligence and rule-based engines were assembled to translate between the official language of Poland and that of its indigenous Lemko minority, which has long been targeted by foreign powers. Engines were scored translating from Lemko to Polish using metrics developed with support from DARPA, producing a bilingual evaluation understudy (BLEU) score of 31.13 and translation edit rate (TER) of 54.10. Meanwhile, in the other direction, the engines scored TER 53.73 and BLEU 29.49, a score 6.5 times better than that of Google Translate’s Polish-Ukrainian service.

    Please cite as: Orynycz, P., & Dobry, T. (2023). Winning Hearts & Tongues: A Polish to Lemko Case Study. In Proceedings of the Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC).

    This version of the contribution has been accepted for publication after peer review but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at this link. Use of this Accepted Version is subject to the publisher’s Accepted Manuscript terms of use.

    Introduction

    Training outcomes stand to benefit from the use of machine translation for Indigenous and minority languages and dialects, whose usage is increasingly and significantly (p ≤ 0.05) associated in scientific literature with sharper minds, more resilient psyches, and hardier health, not to mention sixfold lower suicide rates (Hallett et al., 2007, p. 398). Heritage language use may steel against foreign adversary influence, and in the North Atlantic theater, may prevent targeted populations from falling into Russian or other ahistorical ethnolinguistic identities when coping with the devastating aftermath of language loss. While the localization of materials into local dialects and languages may have previously been beyond the means of war-torn communities and governments, thanks to recent breakthroughs in artificial intelligence and computational linguistics, it is now possible to contemplate affordable devices that are cheaper, faster, and better than humans at translating into low-resource Indigenous and minority languages.

    The problem of language loss is not limited to Europe. While the global language endangerment situation may not be as dire as available data had suggested in the early nineties, available statistics still paint a grim picture. In an oft-cited work dubbed “the great linguistic call to arms” by Simmons and Lewis (2013), Krauss had warned in 1992 that from half to 90% of the world’s languages were set to become extinct this century. In addition, he had posited a “documented rate of destruction” of 90% of Indigenous languages in the Anglosphere, where English predominates, and an estimated 50% moribundity rate for the entire Soviet Union, where Russian was dominant (Krauss, 1992, p. 5). Twenty years later, Simmons and Lewis (2013) used updated data to estimate that 1,360 of 7,103 living languages (19%) are not being transmitted to the next generation (p. 12), a figure that rises to 30% in Eastern Europe (p. 13).

    Neuroscience and Learning Outcomes

    The latest research indicates that using a native language may mean more mental bandwidth is available for learning, and that test scores significantly improve. An investigation at the McGovern Institute for Brain Research headed by Massachusetts Institute of Technology (MIT) researchers earlier this year observed a relatively low brain response to native language stimuli when measured using the functional magnetic resonance imaging (fMRI) technique (Malik-Moraleda et al., 2023). As an explanation, the researchers suggested that expertise reduces the amount of brainpower required for a task (Mesa, 2023). In a recent study for the World Bank, Soh, Del Carpio and Wang (2021) found that using a non-native language of instruction may be detrimental, and to males especially. In the study, math and science test scores among students in Malaysia dropped significantly after the language of instruction was switched from Malay to English (Soh et al., 2021, pp. 4, 17, 18–19).

    National Security

    According to North Atlantic Treaty Organization (NATO) Special Operations School faculty members White and Overdeer, Russia may exploit ethnic cleavages in targeted societies as a lever of hybrid warfare in an attempt to achieve foreign policy objectives (2020, pp. 31–33), with ethnolinguistic differences being “readily available and easy to exacerbate” (p. 40). Below, the instigation and exploitation of ethnolinguistic strife in both western and eastern Europe is explored.

    Spain: Catalonia

    The public use of Catalan, a minority language spoken in Northeastern Spain, was prohibited by the Franco government until 1975 (Miller & Miller, 1996, p. 113). Rather than resolve strife, that policy may have caused it to fester. In a story for The New York Times, Schwirtz and Bautista (2021) cited a June 2020 European intelligence report asserting that the Russian Federation military intelligence system’s elite Unit 29155 had been on the ground in Catalonia around the time of a 2017 independence referendum when the “secretive protest group” Tsunami Democràtic occupied the Barcelona airport and cut off the main highway linking Spain to its northern neighbors. Three days later, a colonel in Russia’s Federal Protective Service and a close relative of a top presidential adviser deeply involved in Russia’s efforts to support separatists in Ukraine flew in from Moscow for a strategy session to discuss the Catalan independence movement (Schwirtz & Bautista, 2021).

    Russian Federation support for the Catalan independence movement reportedly even included an offer of 10,000 troops and 500 billion United States dollars in the event of independence (Baquero et al., 2022; see also Brunet, 2022, p. 74). Louise I. Shelley of the Terrorism, Transnational Crime and Corruption Center at George Mason University in Virginia called Russia reaching out to separatist leaders in Spain consistent with past behavior, and explained, “The linkages between the Catalonians and the Russians go back to the Soviet era. Before the collapse of the USSR, high-level meetings were held in Barcelona with distinguished Russians” (Baquero et al., 2022).

    Western Ukraine

    In Ukraine, non-trivial differences between local lects and the literary standard taught in schools create openings for adversaries to stoke the flames of separatism. According to a 2012 report by Rating, only 54% of ethnic Ukrainians used their heritage language, with 29% using Russian and 17% a mix of the two (p. 9). That year, nine books were printed in Russian for every one in Ukrainian, and only 13% of print media copies were written in Ukrainian (Moser, 2016a, p. 604).

    Two decades ago, the United States Department of State’s annual Country Reports on Human Rights Practices for 2002 reported as follows:

    Some pro-Russian organizations in the eastern part of the country complained about the increased use of Ukrainian in schools and in the media. They claimed that their children were disadvantaged when taking academic entrance examinations, since all applicants were required to take a Ukrainian language test.

    Department of State, 2003, p. 1758

    Rusyns (Ruthenians) continued to call for status as an official ethnic group in the country. Representatives of the Rusyn community have called for Rusyn-language schools, a Rusyn-language department at Uzhhorod University, and for Rusyn to be included as one of the country’s ethnic groups in the 2001 census. According to Rusyn leaders, more than 700,000 Rusyns live in the country.

    Department of State, 2003, p. 1759

    As a starting point for the wider issues mentioned by the Department of State, which are outside the scope of this paper, former Harvard Ukrainian Research Institute fellow Michael Moser explained:

    Rusyns can probably be best described as those remainders of Ruthenians/Rusyns who have not been willing to join the modern Ukrainian national and linguistic movement… initially this reluctance was not based on any Rusyn identity in the modern sense, but resulted from Russophile views that Ruthenians/Rusyns/Little Russians belong to one indivisible Russian people and there was no place for a Ukrainian nation and a Ukrainian language.

    Moser, 2016b, p.127

    In June 2007, the “Russian World Foundation” was founded in Moscow by presidential decree, and started funding “compatriots” in Ukraine, bestowing over 1,200,000 United States dollars by March 2011 (Moser, 2016a, p. 607).

    A gathering took place at the Russian Drama Theater in the far-western city of Mukachevo, Ukraine, on October 25, 2008 (Wiktorek, 2010, p. 100). There were even reports of a hundred-odd out-of-towner armed individuals outside (Ukrajinsʹke nacionalʹne objednannja, 2009; see also Wiktorek, 2010, p. 100). Whatever happened there, at 8:30pm that night, a proclamation of “restoration of Rusyn statehood” appeared in Russian on the online platform rusin.forum24.ru. It mentions among its grievances “the replacement of the Rusyn state language with Galician Ukrainian, the language of Polish Galicia, Rusyns’ northern neighbor.” (2-nd Europаn [sic] Сongress Subсarpathion [sic] Rusyns, 2008).

    In the run-up to ordering his army to overtly invade Ukraine to conduct a widescale “special military operation,” the president of the Russian Federation had devoted a full paragraph to the “fate of Subcarpathian Rus’” in his essay On the Historical Unity of Russians and Ukrainians:

    I will separately discuss the fate of Subcarpathian Rus’, which ended up in Czechoslovakia after the collapse of Austria-Hungary. A considerable portion of the local inhabitants comprised Rusyns. Although it is now rarely remembered, after the liberation of Transcarpathia by Soviet troops, a congress of the Orthodox population of the territory declared support for inclusion of Subcarpathian Rus’ into the Russian Soviet Federative Socialist Republic or directly into the Soviet Union as a separate, Carpatho-Russian republic.

    Putin, 2021

    In another incident in the region, two members of the Polish far-right organization Falanga, whose members had been on the ground among Russian separatists in Eastern Ukraine, set fire to a cultural center of the Hungarian indigenous ethnolinguistic minority in the regional capital of Uzhhorod in 2018 by dousing it with gasoline and throwing in a Molotov cocktail (Górzyński, 2018).

    Health and Safety

    Suicidality

    Sixfold higher suicide rates have been observed in communities where fewer than half report conversational knowledge of their heritage language (Hallett et al., 2007, p. 398). On a positive note, youth suicide rates dropped to zero in all cases but one where a majority reported ability to hold a conversation in their heritage language (p. 397). In a 2022 study by Pezzia and Hernandez, those who did not speak a heritage language fluently, but whose parents did (p. 95), were most likely to have suicidal thoughts (p. 98). As an explanation for the tie between language loss and suicidal ideation, Pezzia and Hernandez suggest “acculturative stress or social exclusion” resultant from acceptance as a full member of one’s ethnic group being prevented by lack of fluency in its language (p. 100).

    Depression

    After controlling for age, gender, education, financial situation, and ethnic group membership, researchers found that concealment of identity by avoiding use of a heritage language in public (termed language avoidance) is a statistically significant (p = 0.006) predictor of being categorizable as “depressed” owing to production of a score of 5 or higher on Kroenke and Spitzer’s Patient Health Questionnaire 9 (Olko et al., 2023, pp. 5–6). As a theorized mechanism, the researchers mentioned ethnic discrimination inducing chronic stress, leading to persistent hyperactivity of the hypothalamic-pituitary-adrenal axis and resultant heightened levels of corticotropin-releasing factor and cortisol, pointing to the work of Willner (2017), as well as Slavich and Irwin (2014).

    Diabetes

    After adjustment for socio-economic factors, diabetes mellitus was significantly (p = 0.005) less prevalent in communities with Indigenous language knowledge (Oster et al., 2014, p. 9).

    Tobacco use

    Being more English-language acculturated has been significantly associated with smoking among older Asian American adolescents in New York City (Rosario-Sim & O’Connell, 2009). In another study, use of English at home was associated with higher smoking prevalence rates among Asian American youth (p = 0.021), as was high English proficiency (p = 0.040) (Chen et al., 1999, p. 325). Among Hispanic girls, those who spoke English with their parents smoked more than those who spoke both English and Spanish with their parents (p < 0.0001), as well as girls who spoke Spanish with their parents (p < 0.01) (Epstein et al., 1998, p. 586).

    Substance use and assault

    According to the Australian Bureau of Statistics (2011/2012), Aboriginal youth between the ages of fifteen and twenty-four years who spoke an Indigenous language were less likely to have used illicit substances (16% vs 26%), less likely to report binge drinking in the previous two weeks (18% vs. 34%), and less likely to have been a victim of physical or threated violence in the previous year (25 vs 37%).

    Solutions So Far

    Neural Artificial Intelligence

    The neural machine translation breakthrough by an international team with Defense Advanced Research Projects Agency (DARPA) funding under the Broad Operational Language Translation (BOLT) project (Cho et al., 2014) as well as Google (Sutskever et al., 2014) gave rise to engines capable of achieving quality scores on par with those of humans. However, training neural engines requires more data than is generally available for low-resource languages.

    Rule-Based Machine Translation

    Rule-based translation engines of the past were generally considered to have been wastes of money (Hajič et al., 2000, p. 7) with the notable exception of the Prague-based RUSLAN system funded by the Soviet-founded Council for Mutual Economic Assistance (COMECON), which produced Czech to Russian translations of mainframe computer operating system documentation (p. 7), with translations of two in five sentences being correct, another two in five only containing minor errors, and only one in five requiring substantial editing or retranslation (p. 8).

    The main reasons given for the apparent disappointment in Prague over the results of Czech to Russian rule-based systems was that the task itself was too complex, and that Czech and Russian are not closely related enough to make such an approach viable. Unrealistic expectations and lack of objective evaluation metrics might be added to the list. Meanwhile, results translating from Czech into Slovak and Polish, all more closely related West Slavic languages, were quite encouraging (Hajič et al., 2000, p. 12).

    Hybrid Neural/Rule-Based Machine Translation

    In results presented at the Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC), a rule-based Lemko to Polish engine was combined with a Polish to English rule-based engine to produce the world’s first published results for machine translations from Lemko to English (Orynycz et al., 2021). The next year, translations in the opposite direction were produced by modifying the system and running it in reverse (Orynycz, 2022). Improvements made to that engine by overhauling it and increasing its vocabulary later led to a 35% improvement in translation quality (Orynycz, 2023).

    New Solutions

    Rule-Based Machine Translation Expert System

    An inference engine was hand coded via test-driven development to reflect truths contained in a knowledge base assembled in consultation with the work of subject area experts. This approach also allows for manual elimination of foreign interference and purging of Russian and other loanwords. Dictionaries consulted included Horoszczak’s bidirectional Polish-Lemko dictionary (2004), Pyrtej’s Lemko-Ukrainian dictionary (2004), Duda’s Ukrainian-Lemko dictionary (2011), and Rieger’s Lemko-Polish glossary (1995), as well as his Lemko-Polish glossary based on recordings from the village of Bartne (2016). The grammars of Fontański and Chomiak (2000) as well as Pyrtej (2013) were consulted in coding rules to inflect words by grammatical categories such as number, case, and gender.

    Transformer Artificial Intelligence

    The neural machine translation breakthrough was followed closely by the introduction by scientists at Google Brain and Google Research of the Transformer architecture, which is based solely on attention mechanisms and dispenses with recurrence and convolutions entirely (Vaswani et al., 2017). For this experiment, we trained transformer based artificial intelligence models to translate from Polish into Lemko, and as far as we are aware, are first to publish results.

    Material and Methods

    Material

    Data

    Artificial intelligence models were created using a corpus comprising 1,611,352 source words (as counted by Microsoft Word 365) across 112,507 lines penned by Polish-born native speakers of Lemko, together with their translations into Polish by the Google Cloud Platform Translation Application Programming Interface (API) configured to translate as if from Standard Ukrainian using neural machine translation.

    Lemko (also known as Lemko Rusyn) genetically belongs to the southwestern Ukrainian dialect system, within which it is differentiated by fixed stress on the penultimate (next-to-last) syllable (Danylenko, 2020). Such dialects are indigenous to territories now under the governance of Poland and, since 1993, the Slovak Republic.

    In interwar Poland, the government fostered separate Lemko, Hutsul, and Boiko identities in an effort to counteract the Ukrainian movement, whose teachers had been dismissed (Moser, 2016b, p. 128). In 1935, Russophile teachers were replaced with Poles, and Lemko was finally removed from schools in 1937 (p. 128). About two-thirds of Lemko speakers in Poland were deported to Ukraine between 1945 and 1947, with the remaining 40,000 to 50,000 resettled primarily to newly annexed, formerly German territories of Communist Poland (p. 131). According to preliminary results for Poland’s 2021 census, 12,700 listed “Lemko” as an ethnicity (Główny Urząd Statystyczny, 2023, p. 3).

    Methods

    Preprocessing

    First, all text was lowercased. Next, a space was added before and after all non-alphanumeric characters. Initial and final whitespace was also stripped from each line. Then, the above corpus was processed using Moslem’s script (2023a) for cleaning and filtering parallel datasets (commit db6f441), leaving 33,612 lines comprising 610,990 source words as tallied by Microsoft Word 365.

    Subword tokenization

    Unigram subwording models were trained using Moslem’s script (2021a) (commit fbf2488). Next, those models were employed to tokenize both the source and target text using subwording script number two of the same commit (Moslem, 2021b).

    Data splitting

    2,000 lines from the above corpus were split off for evaluation using Moslem’s script (2023b) for that purpose (commit e6decb7).

    Training artificial intelligence models

    Artificial intelligence models were trained using the TensorFlow version of the OpenNMT toolkit for neural machine translation, which is the successor to Harvard’s seq2seq-attn sequence-to-sequence model with attention (Klein et al., 2017, p. 68). The command for starting the training and evaluation loop was launched with automatic configuration for the Transformer model. Automatic evaluation was also enabled, and set to run every 5,000 steps using the bilingual evaluation understudy (BLEU) metric and export a model when a new high score was achieved. Training was conducted on the Google Colabatory platform utilizing NVIDIA A100 graphical-processing units and a high random-access memory runtime state. Training was permitted to run overnight.

    Inference engine

    A translation inference engine was crafted on the basis of Klein’s Python serving client script (commit  2b196ff) (2021), which was modified to accommodate source and target subword tokenization models, as well as optimize spacing and capitalization to better conform to the expectations of artificial intelligence models and end users. Translation predictions were saved to file for subsequent quality evaluation.

    Quality evaluation

    The quality of translations was evaluated using metrics whose development was funded by DARPA: both BLEU (Papineni et al., 2002) and the Translation Edit Rate (TER) (Snover et al., 2006). The scores themselves were calculated using the industry-standard methods developed at Amazon Research by Post (2018).

    Results

    Translation Quality Scores

    The experimental rule-based expert system outperformed all others by every metric when translating from Polish to Lemko and vice versa.

    Polish to Lemko Translation Quality

    When translating from Polish to Lemko, the experimental expert rule-based system achieved a bilingual evaluation understudy quality score of BLEU 29.49, which is 6.50 times better than Google Translate’s Ukrainian service. Meanwhile, the experimental artificial intelligence Transformer neural machine translation system achieved a score of BLEU 15.90 after 30,000 training steps, which was 3.50 times better than Google Translate’s Ukrainian. When measured using the alternative TER metric, the experimental expert, rule-based system scored TER 53.73, which is 61% better than Google Translate’s Ukrainian service.

    Figure 1. Polish to Lemko Translation Quality: BLEU Scores
    Figure 2. Polish to Lemko Translation Quality: TER Scores

    Lemko to Polish Translation Quality

    The experimental, rule-based expert system outperformed all others by every metric when translating from Lemko to Polish, achieving a bilingual evaluation understudy quality score of BLEU 31.13, which was 1.4 times better than the performance of Google Translate’s Ukrainian service at BLEU 22.16.

    Samples

    English meaning (human translator)In texts for example, and I mainly study texts, I have this source, they wrote: the Austrians were murdering us, so what will those awful Muscovites they’re trying to scare us with do to us?
    Polish
    (human translator)
    Na przykład oni w tekstach, a ja głównie badam teksty, mam takie źródło, pisali: Austriacy nas mordowali, to co zrobią ci straszni Moskale, którymi nas straszą?
    Truth: Lemko reference (native speaker)І они наприклад в текстах, а я головні досліджам тексты, то значыт мам такє джерело, писали: но Австриякы нас мордували, то што зроблят тоты страшны Москалі, котрыма нас страшат?I ony napryklad v tekstach, a ja holovni dosljidžam tekstŷ, to značŷt mam takie džerelo, pysaly: no Avstryjakŷ nas morduvaly, to što zrobljat totŷ strašnŷ Moskalji, kotrŷma nas strašat?
    SystemTranslation HypothesesQuality Scores
    CyrillicTransliterationBLEUTER
    ExperimentalExpert System (Rule-Based)Наприклад они в текстах, а я головні бадам текстий, мам такы джерело, писали: Австриякы нас мордували, то што зроблят тоты страшны москале, котрыма нас страшом?Napryklad ony v tekstach, a ja holovni badam tekstyj, mam takŷ džerelo, pysaly: Avstryjakŷ nas morduvaly, to što zrobljat totŷ strašnŷ moskale, kotrŷma nas strašom?46.3234.48
    Artificial Intelligence (Transformer)Примірово, в текстах, а я головні в заміріню тексту, маме джерело, писали: австриякы австриякы мордували, же то што зроблят стабілизацию тому, котрыма нас престрашыли?Prymirovo, v tekstax, a ja holovni v zamirinju tekstu, mame džerelo, pysaly: avstryjakŷ avstryjakŷ morduvaly, že to što zrobljat stabilyzacyju tomu, kotrŷma nas prestrašŷly?27.6555.17
    Google TranslatePolishНа прзиклад оні в текстах, а я ґлувнє бадам тексти, мам такє зьрудло, пісалі: Аустряци нас мордовалі, то цо зробьон ці страшні Москалє, ктуримі нас страшон?Na przyklad oni v tekstach, a ja gluvnje badam teksty, mam takje źrudlo, pisalji: Austriacy nas mordovalji, to co zrobjon ci strašni Moskalje, kturymi nas strašon?14.2168.97
    UkrainianНаприклад, у своїх текстах, а я в основному досліджую тексти, у мене є таке джерело, вони писали: Австрійці нас повбивали, що будуть робити ті страшні москалі, якими вони нам погрожують?Napryklad, u svojix tekstax, a ja v osnovnomu doslidžuju teksty, u mene je take džerelo, vony pysaly: Avstrijci nas povbyvaly, ščo budutʹ robyty ti strašni moskali, jakymy vony nam pohrožujutʹ?9.4382.76
    RussianНапример, в их текстах, а я в основном исследую тексты, у меня есть такой источник, они писали: Нас убили австрийцы, что будут делать те страшные москвичи, которыми они нам угрожают?Naprimer, v ix tekstax, a ja v osnovnom issleduju teksty, u menja estʹ takoj istočnik, oni pisali: Nas ubili avstrijcy, čto budut delatʹ te strašnye moskviči, kotorymi oni nam ugrožajut?9.4386.21
    BelarusianНапрыклад, у сваіх тэкстах, а я ў асноўным тэксты дасьледую, у мяне ёсьць такая крыніца, яны пісалі: Аўстрыйцы нас забілі, што будуць рабіць тыя страшныя маскалі, якімі яны нам пагражаюць?Napryklad, u svaix tèkstax, a ja ŭ asnoŭnym tèksty das′leduju, u mjane ës′c′ takaja krynica, jany pisali: Aŭstryjcy nas zabili, što buduc′ rabic′ tyja strašnyja maskali, jakimi jany nam pahražajuc′?4.9996.55
    Table 1. Example Polish to Lemko Translations

    Discussion

    Policy Implications

    Learning, public health, and security outcomes may improve if educational, training, community outreach, and other materials are localized into regional dialects and languages in addition to national standard ones. To avoid straining human resource capacities, linguists could be tasked with post-editing the output of expert and artificial intelligence machine translation systems, as opposed to translating by hand. More affordable access to translated materials could bring improvements to social services in underserved areas. Stonewall et al. list being multilingual, and thus inclusive, high on their list of best practices for engaging underserved populations (2017). The European Union has been funding research suggesting machine translation can be used to facilitate civic participation, as well as strengthen public health and safety among underserved communities (Nurminen & Koponen, 2020).

    Technological Implications

    Things are on track for commercially viable machine translation into Lemko at the press of a button to become a reality. Continued test-driven development of expert, rule-based systems seems poised to offer the quickest path to superhuman translation quality scores. Transformer-based artificial intelligence systems may win out in the long term.

    Some tweaks to the artificial intelligence training procedure merit experimentation. The corpus filtering script may have been overzealous for this task and overly shrunk the corpus size, hindering performance. The script might be omitted in a future experiment. Overfitting may be hampering scores, and perhaps the evaluation interval of 5,000 steps should be shortened. Using the expert rule-based system to translate corpora into Polish from Lemko as opposed to the Google Cloud Platform service might result in better results. Incorporating automatic spelling correction modules might also improve scores globally.

    Russian and other foreign linguistic interference might be countered programmatically by purging loanwords using find-replace algorithms. National language academies and other authorities might find such capabilities useful. It is possible that translation quality has already reached superhuman levels, a hypothesis that could be tested in future experiments.

    Declaration of Competing Interests

    The primary author serves as a quality control specialist for the Google Translate project out of San Francisco.

    References

    2-nd Europаn [sic] Сongress Subсarpathion [sic] Rusyns [rusin]. (2008, October 25).MEMORANDUM 2-go Evropejskogo Kongressa Podkarpatskix Rusinov o prinjatii AKTA PROVOZGLAŠENIJA vosstanovlenija rusinskoj gosudarstvennosti [Memorandum of the Second European Congress of Subcarpathian Rusyns on the Adoption of a Proclamation of Restoration of Rusyn Statehood] [Online forum post]. Informacionnoe Agenstvo Podkarpatskoj Rusi. IAPR. Forum podkarpatskix rusinov.
    http://rusin.forum24.ru/?1-9-0-00000005-000-0-0-1224955832

    Australian Bureau of Statistics, (2012). Culture, Heritage and Leisure: Speaking Aboriginal and Torres Strait Islander Languages. Aboriginal and Torres Strait Islander Wellbeing: A focus on children and youth. (Original work published 2011) Retrieved May 1, 2023 from https://www.abs.gov.au/ausstats/abs@.nsf/Latestproducts/1E6BE19175C1F8C3CA257A0600229ADC

    Baquero, A., Hall, K.G., Tsogoeva, A., Albalat, J.G., Grozev, C., Bagnoli, L., IStories, & Vergine, S. (2022, May 8). Fueling Secession, Promising Bitcoins: How a Russian Operator Urged Catalonian Leaders to Break With Madrid. Organized Crime and Corruption Reporting Project (OCCRP). https://www.occrp.org/en/investigations/fueling-secession-promising-bitcoins-how-a-russian-operator-urged-catalonian-leaders-to-break-with-madrid

    Brunet, F. (2022). The Economics of Catalan Separatism. Cham: Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-14451-6

    Chen, X., Unger, J.B., Cruz, T.B., & Johnson, C.A. (1999). Smoking patterns of Asian-American youth in California and their relationship with acculturation. Journal of Adolescent Health, 24(5), 321-328. https://doi.org/10.1016/S1054-139X(98)00118-9

    Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1724–1734 http://dx.doi.org/10.3115/v1/D14-1179

    Danylenko, A. (2020). “Carpatho-Rusyn”, in: Encyclopedia of Slavic Languages and Linguistics Online, Editor-in-Chief Marc L. Greenberg. Consulted online on 13 June 2023
    http://dx.doi.org/10.1163/2589-6229_ESLO_COM_031960

    Department of State (2003). S.Prt. 108-30, Volume I – COUNTRY REPORTS ON HUMAN RIGHTS PRACTICES FOR 2002 VOLUME I. Washington, D.C: U.S. Government Publishing Office. https://www.govinfo.gov/app/details/CPRT-108JPRT86917/CPRT-108JPRT86917

    Duda, I. (2011). Lemkivsʹkyj slovnyk [A Lemko Dictionary]. Ternopil: Aston.

    Epstein, J. A., Botvin, G.J., & Diaz, T. (1998). Linguistic acculturation and gender effects on smoking among Hispanic youth. Preventive medicine, 27(4), 583–589. https://doi.org/10.1006/pmed.1998.0329

    Fontański, H., & Chomiak, M. (2000). Gramatyka języka łemkowskiego [A Grammar of the Lemko Language]. Katowice: „Śląsk” Sp. z o.o. Wydawnictwo Naukowe.

    Główny Urząd Statystyczny (2023). Wstępne wyniki NSP 2021 w zakresie struktury narodowo-etnicznej oraz języka kontaktów domowych [Preliminary Results of the 2021 Census in Terms of National and Ethnic Structure and Language Used at Home]. Retrieved June 11, 2023 from https://stat.gov.pl/spisy-powszechne/nsp-2021/nsp-2021-wyniki-wstepne/wstepne-wyniki-narodowego-spisu-powszechnego-ludnosci-i-mieszkan-2021-w-zakresie-struktury-narodowo-etnicznej-oraz-jezyka-kontaktow-domowych,10,1.html

    Górzyński, O. (2018, March 3). Russia’s Covert Campaign to Inflame East Europe. The Daily Beast. https://www.thedailybeast.com/russias-covert-campaign-inflaming-east-europe

    Hajič, J., Hric, J., & Kuboň, V. (2000, April). Machine translation of very close languages. In Sixth Applied Natural Language Processing Conference (pp. 7–12). http://dx.doi.org/10.3115/974147.974149

    Hallett, D., Chandler, M.J., & Lalonde C.E. (2007): Aboriginal language knowledge and youth suicide. Cognitive Development. 22(3), 392–399. https://doi.org/10.1016/j.cogdev.2007.02.001

    Horoszczak, J. (2004). Słownik łemkowsko-polski, polsko-łemkowski [Lemko-Polish and Polish-Lemko Dictionary], Warszawa: Rutenika.

    Klein, G. (2021). Inference with TensorFlow Serving. Retrieved June 5, 2023, from https://github.com/OpenNMT/OpenNMT-tf/blob/master/examples/serving/tensorflow_serving/ende_client.py

    Klein, G., Kim, Y., Deng, Y., Senellart, J., & Rush, A.M. (2017). OpenNMT: Open-Source Toolkit for Neural Machine Translation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics-System Demonstrations, pp. 67–72. https://doi.org/10.18653/v1/P17-4012

    Krauss, M. (1992). The world’s languages in crisis. Language, 68(1), 4–11. https://doi.org/10.1353/lan.1992.0075

    Malik-Moraleda, S., Jouravlev, O., Mineroff, Z., Cucu, T., Taliaferro, M., Mahowald, K., Blank, I., & Fedorenko, E. Functional characterization of the language network of polyglots and hyperpolyglots with precision fMRI. Cold Spring Harbor Laboratory. Advance online publication. https://doi.org/10.1101/2023.01.19.524657

    Mesa, N. (2023, February 3). Your native tongue holds a special place in your brain, even if you speak 10 languages. Science, https://doi.org/10.1126/science.adh0055

    Miller, H., & Miller, K. (1996). Language Policy and Identity: the case of Catalonia. International Studies in Sociology of Education, 6(1). https://doi.org/10.1080/0962021960060106

    Moser, M. (2016a). Language Politics in Contemporary Ukraine (25 February 2010–25 February 2011). In New Contributions to the History of the Ukrainian Language (pp. 601–619). Canadian Institute of Ukrainian Studies Press. https://www.ciuspress.com/product/new-contributions-to-the-history-of-the-ukrainian-language/

    Moser, M. (2016b). Rusyn: A New–Old Language In-between Nations and States. In: Tomasz Kamusella, Motoki Nomachi, Catherine Gibson (Eds.), The Palgrave Handbook of Slavic Languages, Identities and Borders, 124–139. https://doi.org/10.1007/978-1-137-34839-5_7

    Moslem, Y. (2021a). Training SentencePiece models for the source and target. Retrieved June 4, 2023, from https://github.com/ymoslem/MT-Preparation/blob/main/subwording/1-train_unigram.py

    Moslem, Y. (2021b). Subwording the source and target files. Retrieved June 4, 2023, from https://github.com/ymoslem/MT-Preparation/blob/main/subwording/2-subword.py

    Moslem, Y. (2023a). Filtering/Cleaning parallel datasets for Machine Translation. Retrieved June 4, 2023, from https://github.com/ymoslem/MT-Preparation/blob/main/filtering/filter.py

    Moslem, Y. (2023b). Splitting the parallel dataset into train, development and test datasets for Machine Translation. Retrieved June 4, 2023, from
    https://github.com/ymoslem/MT-Preparation/blob/main/train_dev_split/train_dev_test_split.py

    Nurminen, M., & Koponen, M. (2020). Machine translation and fair access to information. Translation Spaces, 9(1), 150–169. https://doi.org/10.1075/ts.00025.nur

    Olko, J., Galbarczyk, A., Maryniak, J., Krzych-Miłkowska, K., Iglesias Tepec, H, de la Cruz, E., Dexter-Sobkowiak, E., & Jasienska, G. (2023): The spiral of disadvantage: Ethnolinguistic discrimination, acculturative stress and health in Nahua indigenous communities in Mexico. American Journal of Biological Anthropology, 1–15. https://doi.org/10.1002/ajpa.24745

    Orynycz, P. (2022, May). Say It Right: AI Neural Machine Translation Empowers New Speakers to Revitalize Lemko. In Artificial Intelligence in HCI: 3rd International Conference, AI-HCI 2022, Held as Part of the 24th HCI International Conference, HCII 2022, Virtual Event, June 26–July 1, 2022, Proceedings (pp. 567–580). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-05643-7_37

    Orynycz, P. (2023, July). BLEU Skies for Endangered Language Revitalization: Lemko Rusyn and Ukrainian Neural AI Translation Accuracy Soars. In International Conference on Human-Computer Interaction (pp. 135–149). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-35894-4_10

    Orynycz, P., Dobry, T., Jackson, A., & Litzenberg, K. (2021). Yes I Speak… AI neural machine translation in multi-lingual training. In Proceedings of the Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC). https://www.xcdsystem.com/iitsec/proceedings/index.cfm?Year=2021&AbID=96953&CID=862

    Oster, R.T., Grier, A., Lightning, R., Mayan, M.J., & Toth, E.L. (2014). Cultural continuity, traditional Indigenous language, and diabetes in Alberta First Nations: a mixed methods study. International Journal for Equity in Health, 13(92), 1–11. https://doi.org/10.1186/s12939-014-0092-4

    Papineni, K., Roukos, S., Ward, T., & Zhu, W.J. (2002, July). BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics (pp. 311–318). https://doi.org/10.3115/1073083.1073135

    Pezzia, C., & Hernandez, L.M. (2022). Suicidal ideation in an ethnically mixed, highland Guatemalan community. Transcultural Psychiatry. 59(1), 93–105. https://doi.org/10.1177/1363461520976930

    Post, M. (2018). A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference on Machine Translation: Research Papers, pp. 186–191. Brussels: Association for Computational Linguistics http://dx.doi.org/10.18653/v1/W18-6319

    Putin, V. Ob istoričeskom edinstve russkix i ukraincev [On the Historical Unity of Russians and Ukrainians]. Retrieved May 15, 2023 from http://kremlin.ru/events/president/news/66181

    Pyrtej, P. (2004). Korotkyj slovnyk lemkivsʹkyx hovirok [A Brief Dictionary of Lemko Dialects]. Ivano-Frankivsʹk: Siversija MB.

    Pyrtej, P. (2013). Lemkivsʹki hovirky. Fonetyka i morfolohija [The Lemko Dialects. Phonetics and Morphology]. Gorlice: Zjednoczenie Łemków.

    Rating, (2012). Pytannja movy: rezulʹtaty ostannix doslidženʹ 2012 roku [The Language Question: Results of the Latest Research in 2012]. Retrieved August 26, 2023 from https://ratinggroup.ua/files/ratinggroup/reg_files/rg_mova_dynamika_052012.pdf

    Rieger, J. (1995). Słownictwo i nazewnictwo łemkowskie [Lemko Vocabulary and Nomenclature]. Warszawa: Wydawnictwo Naukowe Semper.

    Rieger, J. (2016). Mały słownik łemkowkiej wsi Bartne [A Small Dictionary of the Lemko Village of Bartne]. Warszawa: Wydawnictwo Uniwersytetu Warszawskiego.

    Rosario-Sim, M.G., & O’Connell K.A. (2009). Depression and Language Acculturation Correlate With Smoking Among Older Asian American Adolescents in New York City. Public Health Nursing 26(6), 532–542. https://doi.org/10.1111/j.1525-1446.2009.00811.x

    Schwirtz, M., & Bautista, J. (2023, September 23) Married Kremlin Spies, a Shadowy Mission to Moscow and Unrest in Catalonia. The New York Times. Retrieved May 16, 2023 from https://www.nytimes.com/2021/09/03/world/europe/spain-catalonia-russia.html

    Simmons, G.F., & Lewis, M.P. (2013). The world’s languages in crisis: a 20-year update. In E. Mihas, B. Perley, G. Rei-Doval & K. Wheatley (Eds.), Responses to Language Endangerment: In honor of Mickey Noonan. New directions in language documentation and language revitalization (pp. 3–20). John Benjamins Publishing Company. https://doi.org/10.1075/slcs.142.01sim

    Slavich, G.M., & Irwin, M.R. (2014). From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychological Bulletin, 140(3), 774–815. https://doi.org/10.1037/a0035302

    Snover, M., Dorr, B., Schwartz, R., Micciulla, L., & Makhoul, J. (2006). A study of translation edit rate with targeted human annotation. In Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers, (pp. 223–231). https://aclanthology.org/2006.amta-papers.25

    Soh, Y.C., Del Carpio, X.V., & Wang, L.C. (2021). The Impact of Language of Instruction in Schools on Student Achievement: Evidence from Malaysia Using the Synthetic Control Method. World Bank Group Policy Research Working Paper 9517. http://hdl.handle.net/10986/35031

    Stonewall, J., Fjelstad, K., Dorneich, M., Shenk, L., Krejci, C., & Passe, U. (2017, September). Best practices for engaging underserved populations. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 61, No. 1, pp. 130–134). Sage CA: Los Angeles, CA: SAGE Publications. https://doi.org/10.1177/1541931213601516

    Sutskever, I., Vinyals, O., & Le, Q.V. (2014). Sequence to Sequence Learning with Neural Networks. Advances in Neural Information Processing Systems 27 (NIPS 2014). https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

    Ukrajinsʹke nacionalʹne objednannja (2009). Zakarpatsʹke UNO obicjaje vlasnymy sylamy protydijaty separatystam [Transcarpathian Ukrainian National Organization Promises to Counter Separatists on May 1st with its Own Forces] Retrieved June 10, 2023, from https://zaxid.net/zakarpatske_uno_obitsyaye_vlasnimi_silami_protidiyati_separatistam_1_travnya_n1076607

    Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., & Polosukhin, I. (2017). Attention Is All You Need. NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, 6000–6010. https://dl.acm.org/doi/10.5555/3295222.3295349

    White, D.J., & Overdeer, D. (2020). Exploiting Ethnicity in Russian Hybrid Threats. Strategos: Scientific journal of the Croatian Defence Academy 4(1), 31–49. https://hrcak.srce.hr/242087

    Wiktorek, A.C. (2010). Rusyns of the Carpathians: Competing agendas of identity. Washington, D.C.: Georgetown University. https://repository.library.georgetown.edu/handle/10822/552816

    Willner, P. (2017). The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiology of Stress, 6, 78–93. https://doi.org/10.1016/j.ynstr.2016.08.002

  • Say It Right: AI Neural Machine Translation Empowers New Speakers To Revitalize Lemko

    Say It Right: AI Neural Machine Translation Empowers New Speakers To Revitalize Lemko

    Abstract

    Artificial-intelligence powered neural machine translation might soon resuscitate endangered languages by empowering new speakers to communicate in real time using sentences quantifiably closer to the literary norm than those of native speakers, and starting from day one of their language reclamation journey. While Silicon Valley has been investing enormous resources into neural translation technology capable of superhuman speed and accuracy for the world’s most widely used languages, 98% have been left behind, for want of corpora: neural machine translation models train on millions of words of bilingual text, which simply do not exist for most languages, and cost upwards of a hundred thousand United States dollars per tongue to assemble.

    For low-resource languages, there is a more resourceful approach, if not a more effective one: transfer learning, which enables lower-resource languages to benefit from achievements among higher-resource ones. In this experiment, Google’s English-Polish neural translation service was coupled with my classical, rule-based engine to translate from English into the endangered, low-resource, East Slavic language of Lemko. The system achieved a bilingual evaluation understudy (BLEU) quality score of 6.28, several times better than Google Translate’s English to Standard Ukrainian (BLEU 2.17), Russian (BLEU 1.10), and Polish (BLEU 1.70) services. Finally, the fruit of this experiment, the world’s first English to Lemko translation service, was made available at the web address www.LemkoTran.com to empower new speakers to revitalize their language.

    New speakers are key to language revitalization, and the power to “say it right” in Lemko is now at their fingertips.

    Keywords: Human-Centered AI, Language Revitalization, Lemko.

    Please cite as: Orynycz, P. (2022). Say It Right: AI Neural Machine Translation Empowers New Speakers to Revitalize Lemko. In: Degen, H., Ntoa, S. (eds) Artificial Intelligence in HCI. HCII 2022. Lecture Notes in Computer Science(), vol 13336. Springer, Cham. https://doi.org/10.1007/978-3-031-05643-7_37

    This version of the contribution has been accepted for publication after peer review but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at https://doi.org/10.1007/978-3-031-05643-7_37. Use of this Accepted Version is subject to the publisher’s Accepted Manuscript terms of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms.

    1 Introduction

    1.1. Problems

    This experiment aims to contribute at the local level to the global challenge of language loss, which may be occurring at the rate of one per day, with as few as one tongue in ten set to survive [1, p. 1329]. At press time, SIL International’s Ethnologue uses Lewis and Simons’ 2010 Expanded Graded Intergenerational Disruption Scale to estimate that 3,018 languages are endangered [2], which is 43% of the 7,001 individual living ones tallied at press time in International Organization for Standardization standard ISO 639-3 [3]. Meanwhile, Google Translate only serves 108 [4], and Facebook, 112 [5], which is a start. Nevertheless, one less language is now underserved, as the fruit of this experiment has been deployed to a web server as a public translation service.

    New, artificial intelligence technologies beckon with the promise of an aid that instantly compensates for language loss via human-computer interaction. In my previous experiment, next-generation neural engines achieved higher quality scores translating from Russian and Polish into English than the human control [6, p. 9]. Meanwhile, Facebook and Google1 have invested enormous resources into delivering better-than-human automatic translation systems at zero cost to consumer.

    1 Disclosure: I work as a paid Russian, Polish, and Ukrainian linguist and translation quality control specialist for the Google Translate project; headquarters are in San Francisco.

    Superhuman artificial intelligence does not come cheap: training neural language models requires bilingual corpora with wordcounts in the hundreds of thousands, and ideally, millions, which would cost hundreds of thousands of dollars to translate, sums beyond the means of most low-resource language communities. Fortunately, this experiment shows that there are more resourceful and effective ways to respond to the challenge of creating translation aids for revitalizing endangered languages in low-resource settings.

    1.2 Work So Far

    I built the world’s first Lemko to English machine translation system and have made it available to the public. Its objective translation quality scores have been improving: the engine achieved a bilingual evaluation understudy (BLEU) score of 14.57 in the summer of 2021, as presented to professionals at the National Defense Industrial Association’s Interservice/Industry Training, Simulation and Education Conference and published in its proceedings [6]. For reference, I scored BLEU 28.66 as a human translator working in field conditions, cut off from the outside world. By the autumn of 2021, the engine had reached BLEU 15.74, as reported to linguists, academics, and the wider community at an unveiling event hosted by the University of Pittsburgh.2

    2 Disclosure: the event was sponsored by the Carpatho-Rusyn Society (Pennsylvania), and I was paid by the University of Pittsburgh for my presentation.

    1.3 System Under Study

    Lemko is a definitively to severely endangered [6, p. 3, 7, pp. 177-178], low-resource [8], officially recognized minority language [9] presumably indigenous to transborder highlands south of the Cracow, Tarnów, and Rzeszów metropolitan areas; historical demarcating isoglosses will hopefully be the topic of a future paper. Poland’s census bureau tallied 6,279 residents for whom Lemko was a language “usually used at home” (even if in addition to Polish) in 2011 [10, p. 3], a 12% increase from the 5,605 for whom Lemko was a “language spoken most often at home” in 2002 [11, p. 6, 12, p. 7]. At press time, the results of a fresh count are being tabulated.

    Lemko is classifiable as an East Slavic language as it fits the customary genetic structural feature criteria, the most significant of which is pleophony [13, p. 20], whereby a vowel is assumed to have arisen in proto-Slavic sequences of consonant C followed by mid or low vowel V (*e, or *o, with which *a had merged [14, p. 366]), followed by liquid R (that is, *l or *r), followed by another consonant C, that is, CVRC > CVRVC. To illustrate, compare the Old English word for “melt”, meltan (CVRC) [15, p. 718] to its putative Lemko cognate mołódyj [16, p. 92, 17, p. 150] (CVRC), meaning “young”. Other East Slavic cognates include Ukrainian mołodýj and Russian mołodój [17], both exhibiting a vowel after the liquid (CVRVC). Meanwhile, West Slavic languages lack a vowel before the liquid; compare Polish młody and Slovak mladý (both CRVC) [17]. Further afield, kinship has been posited for other words translatable as “mild”, including Sanskrit mṛdú (CRC) [18, p. 830] and Latin mollis (CVRC if from *moldvis) [15, 17, 19, p. 323].

    How well Lemko meets customary, modern Ukrainian genetic structural feature criteria was not evaluated in this experiment. However, similarity between Lemko and Standard Ukrainian was quantified, for the first time in print of which I am aware. Below, my Lemko engine scored BLEU 6.28, nearly three times the score of Google Translate’s Ukrainian at BLEU 2.17. Further experiments could be performed for the purposes of quantification of similarity between Lemko, Standard Ukrainian, Polish, and Rusyn as codified in Slovakia, as well as a fresh take on the typological classification of Lemko.

    The quantity and quality of resources have been improving, as has resourcefulness empowered by technology. All known bilingual corpora, comprising fewer than seventy thousand Lemko words, were mustered for this experiment. I have been cleaning a bilingual corpus of transcriptions of interviews conducted with native speakers in Poland and my translations into English, which a United States client paid me to perform and permitted me to use. I am also compiling monolingual corpora, which total 534,512 words at press time.

    1.4 Hypothesis

    Based on my subjective impression as a professional translator that Lemko native speakers interviewed in Poland were more likely to use words with obvious Polish cognates than Standard Ukrainian ones, I hypothesized that, all else being equal, a machine could be configured to translate into Lemko from English and achieve BLEU objective quality scores higher than those of Google Translate’s Ukrainian and Russian services.

    1.5 Predictions

    Lemko Translation System. I predicted that the aforementioned translation system would achieve a BLEU score of 15 translating into Lemko from English against the bilingual corpus.

    Google Translate.

    English to Ukrainian service. I predicted that Google Translate’s English to Ukrainian service would achieve a BLEU score of 10 against the bilingual corpus.

    English to Russian service. I predicted that Google Translate’s English to Russian service would achieve a BLEU score of 1 against the bilingual corpus.

    1.6 Methods and Justification

    In the interest of speed, resource conversation, and ruggedizability, a laptop computer discarded as obsolete by my employer was configured to translate into Lemko and make calls to the Google Cloud Platform Google Translate service, as well as configured to evaluate said translations using the industry standard BLEU metric.

    1.7 Principal Results

    The English to Lemko translation system achieved a cumulative BLEU score of 6.28431824990417. Meanwhile, Google Translate’s Ukrainian service scored BLEU 2.16830846776652, its Russian service BLEU 1.10424105952048, and the control of Polish transliterated into the Cyrillic alphabet BLEU 1.70036447680114.

    2 Materials and Methods

    The above hypothesis was tested by calculating BLEU quality scores for each translation system set up in the manner detailed below.

    2.1 Setup

    Hardware. The experiment was conducted on an HP Elitebook 850 G2 laptop with a Core i7-5600U 2.6GHz processor, and 16 gigabytes of random-access memory. It had been discarded by my employer as obsolete and listed for sale at USD 450 at time of press.

    Configuration. In the basic input/output system (BIOS) menu, the device was configured to enable Virtualization Technology (VTx).

    Operating System. Windows 10 Professional 64 bit had been installed on bare metal. It was ensured that Virtual Machine Platform and Windows Subsystem for Linux Windows features were enabled. Next, the WSL2 Linux kernel update for x64 machines (wsl_update_x64.msi) available from Microsoft at https://aka.ms/wsl2kernel was installed.

    Software. The Docker Desktop for Windows version 4.4.3 (73365) installer was downloaded from https://www.docker.com/get-started and run with the option to Install required Windows components for WSL 2 selected.

    Packages. The experiment depended on the below packages from the Python Package Index.

    SacreBLEU. Version 2.0.0 was installed using the Python package documented at the following universal resource locator (URL):
    https://pypi.org/project/sacrebleu/2.0.0/

    Google Cloud Translation API client library. Version 2.0.1 was installed using the Python package documented at the universal resource locator (URL) https://pypi.org/project/google-cloud-translate/2.0.1/

    The above dependencies were specified in the requirements file as follows:
    google-cloud-translate==2.0.1
    sacrebleu==2.0.0

    Container.

    Build. The experiment was run in a Docker container featuring the latest version of the Python programming language, which was version 3.10.2 at the time, running on the Debian Bullseye 11 Linux operating system of AMD64 architecture, of Secure Hash Algorithm 2 shortened digest bcb158d5ddb6, obtainable via the following command:
    docker pull python@sha256:bcb158d5ddb636fa3aa567c987e7fcf61113307820d466813527ca90d60fedc7

    Runtime. The container was configured to save raw experiment data files to a local bind mounted volume.

    Translation Quality Scoring.
    Translation quality scores were calculated according to the BLEU metric using version 2.0.0 of the SacreBLEU tool invented by Post [20].

    Case sensitivity. The evaluation was performed in a case-sensitive manner.

    Tokenization. Segments were tokenized using version 13a of the Workshop on Statistical Machine Translation standard scoring script metric internal tokenization procedure.

    Smoothing Method. The smoothing technique developed at the National Institute of Standards and Technology by United States Federal Government employees for their Multimodal Information Group BLEU toolkit, being the third technique described by Chen and Cherry [21, p. 363], was employed by default.

    Signature. The above settings produced the following signature:
    nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0

    Calibration. Configured as above, the machine produces the following output:

    Segment 1031.
    English sourceEverything was there.
    Lemko reference and transliterationВшытко там было.Všŷtko tam bŷlo.
    Lemkotran.com hypothesis and transliterationВшытко там было.Všŷtko tam bŷlo.
    ScoreBLEU = 100.00 100.0/100.0/100.0/100.0 (BP = 1.000 ratio = 1.000 hyp_len = 4 ref_len = 4)

    Explanation. The hypothesis segment was identical to the reference one and the machine achieved a perfect score of BLEU 100.

    Segment 179.
    English sourceI don't remember what year.
    Lemko reference and transliterationНе памятам в котрым році.Ne pamjatam v kotrŷm roci.
    Lemkotran.com hypothesis and transliterationНі памятам, в котрым році.Ni pamjatam, v kotrŷm roci.
    ScoreBLEU = 43.47 71.4/50.0/40.0/25.0 (BP = 1.000 ratio = 1.167 hyp_len = 7 ref_len = 6)

    Explanation. The hypothesis was different from the reference by two characters. The machine mistranslated the particle negating the verb, using the word for “no” (ni) instead of the expected word for “not” (ne). This has since been largely fixed. The machine also added a comma after pamjatam, which means “I remember”. That dropped the score from what would have been a perfect score of 100 to 43.47.

    Control. As the corpus is based on interviews conducted in Poland, translations into Polish were used as a control. They were transliterated into the Cyrillic alphabet by reversing the rules for transliterating Lemko names established by Poland’s Ministry of the Interior and Administration [22, p. 6564]. Polish nasal vowels were decomposed into a vowel plus a nasal stop, except before approximants, where they were directly denasalized. Word finally, the front nasal vowel /ę/ was simply denasalized, and the back one /ą/ was transliterated as if followed by a dental stop.

    3 Results

    The engine available to the public at www.LemkoTran.com took first place with a cumulative translation quality score of BLEU 6.28, nearly three times that of the runner-up, Google Translate’s English-Ukrainian service (BLEU 2.17). Next was its English-Polish service (BLEU 1.70), with its English-Russian service in last place (BLEU 1.10).

    Table 1. English to Lemko Translation Quality: LemkoTran.com versus Google Translate

    3.1 Results by machine translation service

    Control. When transliterated into the Cyrillic alphabet, Google Translate’s translations into Standard Polish achieved a corpus-level BLEU score of 1.70. Samples of its performances are as follows:

    Segment 2174.
    English sourceWe had still been in Izby, right.
    Lemko reference and transliterationТо мы іщы были в Ізбах, так.To mŷ iščŷ bŷly v Izbach, tak.
    Polish hypothesis and transliterationБилісьми єще в Ізбах, так.Byliśmy jeszcze w Izbach, tak.
    ScoreBLEU = 46.20
    Segment 854.
    English sourceAnd that's what it's all about.
    Lemko reference and transliterationІ о то ходит.I o to chodyt.
    Polish hypothesis and transliterationІ о то власьнє ходзі.I o to właśnie chodzi.
    ScoreBLEU = 32.47
    Segment 217.
    English sourceAnd that's what it's all about.
    Lemko reference and transliterationТак мі повіл.Tak mi povil.
    Polish hypothesis and transliterationТак мі повєдзял.Tak mi powiedział.
    ScoreBLEU = 35.36

    Hybrid English-Lemko Engine. The engine freely available to the public at the URL www.LemkoTran.com achieved a corpus-level BLEU score of 6.28.

    Segment 1031.
    English sourceEverything was there.
    Lemko reference and transliterationВшытко там было.Všŷtko tam bŷlo.
    Lemkotran.com hypothesis and transliterationВшытко там было.Všŷtko tam bŷlo.
    ScoreBLEU = 100.00
    Segment 1445.
    English sourceBut that officer took that medal and said,
    Lemko reference and transliterationАле тот офіцер взял тот медаль і повідат:Ale tot oficer vzial tot medal' i povidat:
    Lemkotran.com hypothesis and transliterationАле тот офіцер взял тот медаль і повіл:Ale tot oficer vzial tot medal' i povil:
    ScoreBLEU = 75.06
    Segment 217.
    English sourceThat's what he said to me.
    Lemko reference and transliterationТак мі повіл.Tak mi povil.
    Lemkotran.com hypothesis and transliterationТак мі повіл.Tak mi povil.
    ScoreBLEU = 100.00

    Ukrainian. Google Translate’s translations into Standard Ukrainian achieved a corpus-level BLEU score of 2.35.

    Segment 2419.
    English sourceWhere and when?
    Lemko reference and transliterationДе і коли?De i koly?
    Ukrainian hypothesis and transliterationДе і коли?De i koly?
    ScoreBLEU = 100.00
    Segment 1096.
    English sourceWe were there for three months.
    Lemko reference and transliterationТам зме были три місяці.Tam zme bŷly try misiaci.
    Ukrainian hypothesis and transliterationМи були там три місяці.My buly tam try misjaci.
    ScoreBLEU = 30.21
    Segment 2513.
    English sourceWell, here to the west.
    Lemko reference and transliterationНо то ту на захід.No to tu na zachid.
    Ukrainian hypothesis and transliterationНу, тут на захід.Nu, tut na zachid.
    ScoreBLEU = 30.21

    Russian. Google Translate’s English to Russian service achieved a corpus-level BLEU score of 1.10.

    Segment 432.
    English sourceNobody knew.
    Lemko reference and transliterationНихто не знал.Nychto ne znal.
    Russian hypothesis and transliterationНикто не знал.Nikto ne znal.
    ScoreBLEU = 59.46
    Segment 2751.
    English sourceWhat did they expel us for?
    Lemko reference and transliterationЗа што нас выгнали?Za što nas vŷhnaly?
    Russian hypothesis and transliterationЗа что нас выгнали?Za čto nas vygnali?
    ScoreBLEU = 42.73
    Segment 2164.
    English sourceBrother went off to war.
    Lemko reference and transliterationБрат пішол на войну.Brat pišol na vojnu.
    Russian hypothesis and transliterationБрат ушел на войну.Brat ušel na vojnu.
    ScoreBLEU = 42.73

    4 Discussion

    The Lemko translation system corpus-level BLEU score of 6.28 indicates that while there is much still to be done, things are on track. The Standard Russian score of BLEU 1.10 indicates that Lemko is less similar to Russian than Polish (BLEU 1.70). Perhaps using pre-revolutionary orthography could boost Russian’s score, but that would be an expensive experiment with little obvious benefit.

    The transliterated Standard Polish control similarity score of BLEU 1.70 indicates less interference from the dominant language in Poland than might be expected. It would be interesting to redesign the experiment where a handful of computationally inexpensive and obvious sound correspondences (for example, denasalization of *ę to /ja/ and *ǫ to /u/, retraction of *i to /y/, and change of *g to /h/ [23]) were applied to Polish to see if it then scored higher than Standard Ukrainian.

    In summary, Lemko has been synthesized in the lab and the power to produce it placed in the hands of speakers both new and native. After a thorough engine overhaul and glossary ramp-up, the next step is to objectively measure, and if feasible, have speakers subjectively rate, the quality of synthetic Lemko versus that produced by native speakers. The day when new speakers of low-resource languages can use machine translation to start communicating in their language overnight is closer, as is the day the Lemko language joins the ranks of those previously endangered, but now revitalized.

    Acknowledgements. I would like to thank my colleague Ming Qian of Peraton Labs for inspiring me to conduct this experiment, and Brian Stensrud of Soar Technology, Inc. for introducing us, as well as his encouragement.

    I would also like to thank my friend Corinna Caudill for her encouragement and personal interest in the project, as well as for introducing me to Carpatho-Rusyn Society President Maryann Sivak of the University of Pittsburgh, whom I would like to thank for the opportunity to present my work.

    I would also like to thank Maria Silvestri of the John and Helen Timo Foundation for conducting interviews with Lemko native speakers and donating the transcripts and my translations of them to research and development.

    I would like to Achim Rabus of the University of Freiburg and Yves Scherrer of the University of Helsinki for their interest in the project and ideas.

    I would also like to thank Myhal’ Lŷžečko of the minority-language technology blog InterFyisa for his early interest in the project and community outreach.

    I would also like to thank fellow son of Zahoczewie Marko Łyszyk for his interest in the project and community outreach.

    Finally, I would like to thank my co-author and Antech Systems Inc. colleague Tom Dobry for his encouragement and guidance.

    References

    1. ^ Graddol, D.: The future of language. Science, 303(5662), 1329-1331 (2004). https://doi.org/10.1126/science.1096546

    2. ^ Eberhard, D. M., Simons, G. F., & Fennig, C. D.: Ethnologue: Languages of the World, SIL International. Twenty-fourth edition. SIL International, Dallas (2021). Online version: How many languages are endangered?, https://www.ethnologue.com/guides/how-many-languages-endangered, last accessed 2022/02/11.

    3. ^ ISO 639 Code Tables, https://iso639-3.sil.org/code_tables/639/data, last accessed 2022/02/11.

    4. ^ Language support, https://cloud.google.com/translate/docs/languages, last accessed 2022/02/11.

    5. ^ Select language, https://m.facebook.com/language.php, last accessed 2022/02/11.

    6. ^ ^ Orynycz, P., Dobry, T., Jackson, A., & Litzenberg, K.: Yes I Speak… AI Neural Machine Translation in Multi-Lingual Training. In: Proceedings of the Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2021, Paper no. 21176. National Training and Simulation Association, Orlando (2021). https://www.xcdsystem.com/iitsec/proceedings/index.cfm?Year=2021&AbID=96953&CID=862

    7. ^ Duć-Fajfer, O.: Literatura a proces rozwoju i rewitalizacja tożsamości językowej na przykładzie literatury łemkowskiej. In: Olko, J., Wicherkiewicz, T., Borges, R. (eds.), Integral Strategies for Language Revitalization, pp. 175–200. First edition. Faculty of „Artes Liberales”, University of Warsaw, Warsaw (2016).

    8. ^ Scherrer, Y., Rabus, A.: Neural morphosyntactic tagging for Rusyn. In: Mitkov, R., Tait, J., Boguraev, B. (eds.), Natural Language Engineering, 25(5), 633–650. Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/S1351324919000287

    9. ^ Reservations and Declarations for Treaty No.148 – European Charter for Regional or Minority Languages (ETS No. 148), https://www.coe.int/en/web/conventions/full-list?module=declarations-by-treaty&numSte=148&codeNature=1&codePays=POL, last accessed 2022/02/11.

    10. ^ Formularz indywidualny, https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultstronaopisowa/5781/1/1/nsp_2011_badanie__pelne_wykaz_pytan.pdf, last accessed 2022/02/11.

    11. ^ Narodowy Spis Powszechny Ludności i Mieszkań 2002 r. z 20 maja (formularz A) https://stat.gov.pl/gfx/portalinformacyjny/userfiles/_public/spisy_powszechne/nsp2002-form-a.pdf, last accessed 2022/02/11.

    12. ^ IV Raport dotyczący sytuacji mniejszości narodowych i etnicznych oraz języka regionalnego w Rzeczypospolitej Polskiej – 2013, http://mniejszosci.narodowe.mswia.gov.pl/download/86/14637/TekstIVRaportu.pdf, last accessed 2022/02/11.

    13. ^ Vaňko, J.: The Language of Slovakia’s Rusyns. East European Monographs, New York (2000).

    14. ^ Forston, B., IV: Indo-European Language and Culture. Blackwell Publishing, Oxford (2004).

    15. ^ ^ Pokorny, J.: Indogermanisches etymologisches Wörterbuch, Bern, 1959.

    16. ^ Horoszczak, J.: Słownik łemkowsko-polski, polsko-łemkowski. Rutenika, Warsaw (2004).

    17. ^ ^ ^ ^ Vasmer, M. Russisches etymologisches Wörterbuch. Zweiter Band. Carl Winter, Universitätsverlag, Heidelberg (1955).

    18. ^ Monier-Williams, M.: A Sanskrit-English Dictionary Etymologically and Philologically Arranged with Special Reference to Cognate Indo-European Languages, The Clarendon Press, Oxford (1899).

    19. ^ Derksen, R.: Etymological Dictionary of the Slavic Inherited Lexicon. In: Lubotsky, A. (ed.) Leiden Indo-European Etymological Dictionary Series, vol. 4, Koninklijke Brill, Leiden (2008).

    20. ^ Post, M.: A Call for Clarity in Reporting BLEU Scores. In: Proceedings of the Third Conference on Machine Translation (WMT), vol. 1, pp. 186–191. Association for Computational Linguistics, Brussels (2018). https://aclanthology.org/W18-63

    21. ^ Chen B., Cherry, C.: A Systematic Comparison of Smoothing Techniques for Sentence-Level BLEU. In: Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 362–367. Association for Computational Linguistics, Baltimore (2014). http://dx.doi.org/10.3115/v1/W14-33

    22. ^ Ministerstwo Spraw Wewnętrznych i Administracji: Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 30 maja 2005 r. w sprawie sposobu transliteracji imion i nazwisk osób należących do mniejszości narodowych i etnicznych zapisanych w alfabecie innym niż alfabet łaciński. In: Dziennik Ustaw Nr 102, pp. 6560–6573. Rządowe Centrum Legislacji, Warsaw (2005).

    23. ^ Shevelov, G.: On the Chronology of H and the New G in Ukrainian. In: Harvard Ukrainian Studies, vol. 1, no. 2, pp. 137–152. Harvard Ukrainian Research Institute, Cambridge (1977). https://www.jstor.org/stable/40999942